Advertisement

Forming and Selection Technique for Optimal Configuration of Form-Shaping System for Multiple-Axis Machining

  • I. Manaenkov
  • V. Makarov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

An early project stage is the most important one, as the success of the form-shaping systems for multiple-axis machines project itself highly depends on the right choice of arrangement. As a rule, during the machine tool construction, the main things are experience, existing constructions of analogue machines and intuition. The task of choosing the most appropriate variant of the form-shaping systems for multiple-axis machines construction is very complicated and dubious, requiring the consideration of numerous constructive and technological restrictions, and to solve it, one must develop certain means of formalized project decision-making. The aim of this paper is the formation of graph models that allow us to formalize the interrelationships of the requirements for the multi-axis machining operation with the performance characteristics of a multi-axis machining system. This paper presents a technique of forming and selection of optimal configuration of the form-shaping systems (for multiple-axis machines) based on the integrity of graph models, analytical representations and objective functions.

Keywords

Multi-axis machining operation Form-shaping systems Structural-parametric synthesis 

References

  1. 1.
    Makarov VM, Lukina SV (2014) Upravlenie izmeneniyami izdelij dvojnogo naznacheniya (Change management of dual-purpose products). RITM Publ Repair Innov Technol Mod 4:22–27Google Scholar
  2. 2.
    Lukina SV, Krutyakova MV, Solovyova NP (2011) Obespechenie konkurentosposobnosti metallorezhushhego oborudovaniya putem kontrolya kachestva i stoimosti na ehtapakh NIOKR (Ensuring competitive strength of metal cutting equipment by controlling is quality and cost at the R&D stages). MSTU “MAMI” Publishers, MoscowGoogle Scholar
  3. 3.
    Svoboda O (2006) Precis Eng 30:132–144CrossRefGoogle Scholar
  4. 4.
    Tao J (2009) J Comput Sci Technol 24(1):19–29CrossRefGoogle Scholar
  5. 5.
    Grigoriev SN, Teleshevsky VI, Sokolov VA (2013) Volumetric geometric accuracy improvement for multi-axis systems based on laser software error correction. In: International conference on competitive manufacturing “COMA’113” Stellenbosch, South Africa, 301 p, 30 Jan–1 Feb 2013Google Scholar
  6. 6.
    Lukina SV, Ivannikov SN, Krutyakova MV, Manaenkov IV (2013) Tekhnologicheskij sintez mekhatronnykh stanochnykh sistem dlya mnogoosevoj obrabotki (Technological synthesis of mechatronic machine tools for multi-axis machining). News of MSTU “MAMI” 2(15):46–51Google Scholar
  7. 7.
    Lau K, Hocken R, Haight W (1986) J Precis Eng 8(1):3–8CrossRefGoogle Scholar
  8. 8.
    Lukina SV, Ivannikov SN, Manaenkov IV (2013) Metodika formirovaniya i vybora optimal’noj konfiguratsii formoobrazuyushhej sistemy mnogokoordinatnoj obrabotki (The method of forming and choosing the optimal configuration of a multi-axis machining system). News of MSTU “MAMI” 2(16):237–242Google Scholar
  9. 9.
    Makarov VM, Lukina SV (2015) Validatsiya kak ehffektivnyj instrument upravleniya konfiguratsiej i kachestvom tekhnicheskikh izdelij (Validation as an effective tool for managing the configuration and quality of technical products). Glavnyj mehanik 3:38–45Google Scholar
  10. 10.
    Makarov VM, Lukina SV, Lebed’ PA (2012) Imitatsionnoe modelirovanie v zadachakh tekhnologicheskogo inzhiniringa (Simulation modeling in the tasks of technological engineering). RITM Publ Repair Innov Technol Mod 2:16–22Google Scholar
  11. 11.
    Bringmann B, Knapp W (2006) Model-based ‘Chase-the-Ball’ calibration of a 5-Axes machining center. Annals of the CIRPGoogle Scholar
  12. 12.
    Lukina SV, Manaenkov IV (2016) Povyshenie ehffektivnosti mnogokoordinatnoj obrabotki putem upravleniya ob”emnoj tochnost’yu formoobrazuyushhej stanochnoj sistemy na ehtape NIOKR (na primere stankov dlya lazernoj obrabotki) (Improvement of efficiency of multicoordinate treatment by controlling the exactly accuracy of the form-forming machine system at the R & D stage (on the example of machines for laser processing)), Moscow Polytechnic University, MoscowGoogle Scholar
  13. 13.
    Makarov VM, Lukina SV (2014) Upravlenie izmeneniyami izdelij dvojnogo naznacheniya. RITM Publ Repair Innov Technol Mod 4:22–27Google Scholar
  14. 14.
    Lukina SV, Krutyakova MV, Solovyova NP (2011) Ensuring competitive strength of metal cutting equipment by controlling is quality and cost at the R&D stages, MSTU “MAMI”Google Scholar
  15. 15.
    Makarov VM, Lukina SV (2013) Naukoemkij inzhiniring v zadachakh tekhperevooruzheniya (Scientific engineering in problems of experimental structure). RITM Publ Repair Innov Technol Mod 8:16–20Google Scholar
  16. 16.
    Lukina SV (2015) Metodika optimizatsii proizvodstvennoj deyatel’nosti promyshlennogo predpriyatiya na osnove kompleksa prognosticheskikh modelej formirovaniya i vybora proektnykh innovatsionnykh reshenij v oblasti vysokotekhnologichnykh proizvodstv (Technique of optimization of industrial activity of an industrial enterprise on the basis of a complex of prognostic models of the formation and selection of design innovative solutions in the field of high-technology productions). Vestn MSTU Stankin 1:125–129Google Scholar
  17. 17.
    Lukina SV, Ivannikov SN, Krutjakova MV, Manaenkov IV (2013) Tekhnologicheskij sintez mekhatronnykh stanochnykh sistem dlya mnogoosevoj obrabotki (Technological synthesis of mechatronic machine tools for multi-axis machining). News of MSTU “MAMI” 1:46–51Google Scholar
  18. 18.
    Lukina SV (2015) Razrabotka kompleksa prognosticheskikh modelej formirovaniya i vybora proektnykh innovatsionnykh reshenij v oblasti vysokotekhnologichnykh proizvodstv (Development of a complex of prognostic models for the formation and selection of design innovative solutions in the field of high-tech industries). Aktual probl mashinostroenii 2:451–456Google Scholar
  19. 19.
    Makarov VM, Lukina SV (2015) Upravlenie konfiguratsiej izdelij dvojnogo naznacheniya (Dual-use configuration management). Glavnyj mehanik 3:28–34Google Scholar
  20. 20.
    Lukina SV, Kudryavtseva AL, Manaenkov IV (2013) Tekhnologicheskij sintez mnogoosevogo stanka dlya lazernoj obrabotki (Technological synthesis of a multi-axis machine for laser processing). RITM Publ 1:36–40Google Scholar
  21. 21.
    Lukina SV, Manaenkov IV (2012) Povyshenie ehffektivnosti mnogokoordinatnogo frezerovaniya prostranstvenno-slozhnykh poverkhnostej na stankakh s CHPU (Increasing the efficiency of multi-axis milling of spatially complex surfaces on CNC machines). News of MSTU “MAMI” 2:124–128Google Scholar
  22. 22.
    Lukina SV, Ivannikov SN, Manaenkov IV (2014) Povyshenie ehffektivnosti mnogokoordinatnoj obrabotki putem optimizatsii komponovki mnogoosevoj stanochnoj sistemy (Improving the efficiency of multi-axis machining by optimizing the layout of a multi-axis machining system). News of MSTU “MAMI” 2:34–37Google Scholar
  23. 23.
    Charles Wang (2000) Laser vector measurement technique for the determination and compensation of volumetric positioning errors. Part I: basic theory. Rev Sci Instrum 71(10)CrossRefGoogle Scholar
  24. 24.
    Schwenke H et al (2008) Geometric error measurement and compensation of machines. Ann CIRP 57:660–675CrossRefGoogle Scholar
  25. 25.
    Chen XB, Geddam A (1997) Accuracy improvement of three-axis CNC machining centers by quasi-static error compensation. J Manuf Syst 5(16):323–336CrossRefGoogle Scholar
  26. 26.
    Makarov VM (2008) Model’ upravleniya tochnost’yu formoobrazovaniya gelikoidnykh poverkhnostej pri proektirovanii stanochnoj sistemy (The model for controlling the accuracy of shaping of helicoid surfaces in the design of a machine system). STIN Publ 12:15–20Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Moscow Polytechnic UniversityMoscowRussia

Personalised recommendations