Advertisement

Assurance of Quality Characteristics for Electric Weld Pipe Mill Roll

  • V. V. Maretskaya
  • A. V. Zaytsev
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The paper is dedicated to the assurance of precise machine parts quality characteristics. The emphasis is put on the importance of taking into account the phenomena of technological inheritance and mutual influence of parts quality characteristics in order to estimate the expected characteristic values more precisely. The influence of the initial microhardness of the workpiece surface on the resulting roughness is considered and the dependence between the roughness height parameters and the initial microhardness of the workpiece surface and the parameters of the machining condition for the finish turning and diamond burnishing is obtained. The dependence could be used in the computer model of quality characteristics transformation during the workpiece machining for development of the technological process considering the phenomena of technological inheritance and mutual influence that will ensure directed creation of required characteristics.

Keywords

Quality assurance Mutual influence Surface roughness 

References

  1. 1.
    Kondakov AI (ed) (2005) Napravlennoye formirovaniye ekspluatatsionnykh svoystv izdeliy mashinostroeniya (Directed creation of engineering products performance properties). Mashinostroenie, MoscowGoogle Scholar
  2. 2.
    Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. CIRP Ann Manuf Technol 52(2):483–507CrossRefGoogle Scholar
  3. 3.
    Dalskiy AM, Bazrov BM, Vasiliev AS et al (2000) Tekhnologicheskaya nasledstvennost’ v mashinostroitel’nom proizvodstve (Technological inheritance in machine engineering). In: Dalskiy AM (ed). The Moscow Aviation Institute Publishing House, MoscowGoogle Scholar
  4. 4.
    Vasiliev AS et al (2012) Formation of quality parameters in life cycle of machine details on the basis of technological inheritance. Proceedings on the 11 international scientific conference on advanced production technologies. University of Novi Sad, Novi Sad, Serbia, pp 403–406Google Scholar
  5. 5.
    Kheifets ML, Kysakin NA, Prement GB (2015) Tekhnologicheskoye nasledovaniye ekspluatatsionnykh parametrov kachestva pri izgotovlenii gil’zy tsilindra dvigatelya (Technological inheritance of quality performance in manufacturing sleeves of cylinders). Aktual’nyye voprosy mashinovedeniya 4:301–305Google Scholar
  6. 6.
    Vasiliev AS, Dalskiy AM, Klimenko SA et al (2003) Tekhnologicheskiye osnovy upravleniya kachestvom mashin (Technological fundamentals of machine quality management). Mashinostroenie, MoscowGoogle Scholar
  7. 7.
    Dalskiy AM, Vasiliev AS, Kondakov AI (1996) Tekhnologicheskoye nasledovaniye i napravlennoye formirovaniye ekspluatatsionnykh svoystv izdeliy mashinostroyeniya (Technological inheritance and directed creation of engineering products performance properties). Izvestiya vuzov (Mashinostroenie) 10–12:70–76Google Scholar
  8. 8.
    Maretskaya VV, Savelieva LV (2015) Modelirovaniye tekhnologicheskogo protsessa izgotovleniya detaley (Simulation of the parts manufacture technological process). Glavnyi mekhanik 3:44–49Google Scholar
  9. 9.
    Vasiliev AS (2017) Napravlennoye formirovaniye ekspluatatsionnykh svoystv detaley v tekhnologicheskikh sredakh (Directed creation of parts performance properties in technological environments). Vestnik YuUrGU, Mashinostroenie.  https://doi.org/10.14529/engin170104CrossRefGoogle Scholar
  10. 10.
    Maretskaya VV (2008) K voprosu avtomatizatsii napravlennogo formirovaniya pokazateley kachestva detaley (To the Problem of Automatization in Directed Creation of Parts Quality Characteristics). Vestnik komp’yuternykh i informatsionnykh tekhnologiy 3:29–34Google Scholar
  11. 11.
    Maretskaya VV (2008) Issledovaniye i razrabotka tekhnologicheskikh protsessov izgotovleniya detaley s uchetom vzaimnogo vliyaniya formiruyemykh pokazateley kachestva (Research and development of technological processes for part manufacturing taking into account a mutual influence of formed quality characteristics). Dissertation, State Technical University n.a. N.E. Bauman, MoscowGoogle Scholar
  12. 12.
    Vasiliev AS, Kamsyuk MS, Kolesnikov AG (2003) Tekhnologiya izgotovleniya formovochnykh valkov truboelektrosvarochnykh stanov (The technology of manufacturing the forming rolls of electric-weld pipe mills). In: Vasiliev AS (ed). The Bauman University Publishing House, MoscowGoogle Scholar
  13. 13.
    Burtsev VM, Vasiliev AS, Gemba IN et al (2011) Tekhnologiya mashinostroyeniya (Technology of mechanical engineering) Vol.1 Osnovy tekhnologii mashinostroyeniya (Mechanical engineering Technology Fundamentals). In: Dalskiy AM, Kondakov AI (ed). The Bauman University Publishing House, MoscowGoogle Scholar
  14. 14.
    Dalskiy AM, Suslov AG, Kosilova AG, Mescheryakov RK (eds) (2003) Spravochnik tekhnologa-mashinostroitelya (Handbook of mechanical engineering technologist), vol 1. Mashinostroenie-1, MoscowGoogle Scholar
  15. 15.
    Bol’shev LN, Smirnov NV (1983) Tablitsy matematicheskoy statistiki (Tables of mathematical statistics). Nauka, MoscowGoogle Scholar
  16. 16.
    Gubanov VF (2003) Obespecheniye zadannykh parametrov sherokhovatosti poverkhnosti i mikrotverdosti v protsesse vyglazhivaniya tsilindricheskikh detaley (Assurance of specified parameters of surface roughness and microhardness in the process of cylindrical parts burnishing) Dissertation, Kurgan State University, TyumenGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Moscow State Technical University n.a. N. E. BaumanMoscowRussia

Personalised recommendations