Advertisement

Neural Network Modeling and Prediction of Adhesion of Coatings Applied by Wire Tool

  • A. V. Zotov
  • D. A. Rastorguev
  • O. I. Drachev
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The article deals with the formation of adhesion bonds in the process of applying coatings to machine building products by the method of cladding by a flexible tool. The main points of the mathematical model for determining the adhesion of applied coatings are shown. The calculation in the model is based on the use of the coefficient of relative strength for the particles adhesion of the coating material to the workpiece, the contact temperature of the particles with the base material during their interaction, and the energy of thermal activation of the surface as a result of the chemical reaction considering the energy of mechanical activation. The dataset of the coefficient of relative strength for the adhesion is given for varying the circumferential velocity of the tool, the diameter, and the length of the wires from which the flexible tool is assembled. The modeling of the dependences of the relative strength coefficient is considered as an approximation problem using artificial neural networks. The input data are the technological and structural parameters of the cladding. For modeling, a two-layer feed-forward network is used. For a problem of partitioning input parameters into regions of permissible or unacceptable from the point of view of providing a given coefficient of relative strength, a similar neural network with an output layer with a softmax output neuron is used. The use of two approaches makes it possible to accelerate the design of the cladding operation while increasing the reliability of the decisions made.

Keywords

Cladding Wire tool Coefficient of relative strength for adhesion Flexible tool Adhesion Artificial neural network Feed-forward network 

References

  1. 1.
    Belevskii LS, Belevskaya IV, Belov VK et al (2016) Surface modification of products by plastic deformation and the application of functional coatings. Metallurgist 60:434–439.  https://doi.org/10.1007/s11015-016-0310-yCrossRefGoogle Scholar
  2. 2.
    Levantsevich MA, Maksimchenko NN, Kalach VN (2013) Influence of coatings on the antiskip properties of slipping guides. Russ Eng Res 33:213–216.  https://doi.org/10.3103/S1068798X13040126CrossRefGoogle Scholar
  3. 3.
    Zotov AV, Drachev OI, Rastorguev DA (2016) Otnositel’naya iznosostojkost’ par smeshannogo treniya skol’zheniya, plakirovannyh gibkim instrumentom (Relative wear resistance of pairs of mixed friction sliding, clad with a flexible tool). Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta 187:12–17Google Scholar
  4. 4.
    Basiniuk UL, Levantsevich MA, Maksimchenko NN et al (2013) Improvement of triboengineering properties and noise reduction of tooth gears by cladding functional coatings on working surfaces of interfaced teeth. J Friction Wear 34:438–443.  https://doi.org/10.3103/S1068366613060044CrossRefGoogle Scholar
  5. 5.
    Antsupov AV, Zavalishchin AN, Kadoshnikov VI et al (2003) Povyshenie stojkosti rezhushchego instrumenta naneseniem kompozicionnyh antifrikcionnyh pokrytij (Increasing the resistance of the cutting tool by applying composite antifriction coatings). Tekhnologiya mashinostroeniya 4:25–26Google Scholar
  6. 6.
    Antsupov VP (1999) Teoriya i praktika plakirovaniya izdelij gibkim instrumentom (Theory and practice of cladding products by a flexible tool). MGTU im, Nosova, MagnitogorskGoogle Scholar
  7. 7.
    Belevskii LS, Belevskaya IV, Efimova YY (2015) Friction nanostructuring treatment of metallic surfaces and deposition of functional coatings using a flexible tool. Russ J Non-Ferrous Met 56:359–364.  https://doi.org/10.3103/S1067821215030025CrossRefGoogle Scholar
  8. 8.
    Zavalishchin AN, Smirnov ON, Tulupov SA (2013) Modifikaciya poverhnosti metallicheskih izdelij s ispol’zovaniem pokrytij (Modification of the surface of metal products using coatings). Orbita, MoscowGoogle Scholar
  9. 9.
    Levantsevich MA, Maksimchenko NN, Belyi AN et al (2017) Study of the adhesive properties of a coating prepared by deformation cladding with a flexible tool. J Chem Pet Eng 52:779–784.  https://doi.org/10.1007/s10556-017-0270-5CrossRefGoogle Scholar
  10. 10.
    Levantsevich MA, Maksimchenko NN, Belyi AN et al (2016) Adgezionnaya prochnost’ pokrytij, sformirovannyh deformacionnym plakirovaniem gibkim instrumentom (Adhesive strength of coatings formed by deformation cladding by a flexible tool). Uprochnyayushchie tekhnologii i pokrytiya 138:12–18Google Scholar
  11. 11.
    Antsiferov VN, Bobrov GV, Druzhinin LK et al (1987) Powder metallurgy and sprayed coatings: a textbook for universities. Metallurgiya, MoscowGoogle Scholar
  12. 12.
    Zotov AV, Rastorguev DA, Dema RR (2017) Surface temperature modeling and analysis during cladding of technological equipment guide by wire tool. Proc Eng 206:1432–1437.  https://doi.org/10.1016/j.proeng.2017.10.657CrossRefGoogle Scholar
  13. 13.
    Reznikov AN, Reznikov LA (1990) Teplovye processy v tekhnologicheskih sistemah (Thermal processes in technological systems). Mashinostroenie, MoscowGoogle Scholar
  14. 14.
    Liu Nan, Yang He, Li Heng et al (2015) BP artificial neural network modeling for accurate radius prediction and application in incremental in-plane bending. Int J Adv Manuf Technol 80:971–984.  https://doi.org/10.1007/s00170-015-7075-5CrossRefGoogle Scholar
  15. 15.
    Nguyen TT, Yang YS, Bae KY et al (2009) Prediction of deformations of steel plate by artificial neural network in forming process with induction heating. J Mech Sci Technol 23:1211–1221.  https://doi.org/10.1007/s12206-009-0101-5CrossRefGoogle Scholar
  16. 16.
    Pandey AK, Dubey AK (2013) Multiple quality optimization in laser cutting of difficult-to-laser-cut material using grey–fuzzy methodology. Int J Adv Manuf Technol 65:421–431.  https://doi.org/10.1007/s00170-012-4181-5CrossRefGoogle Scholar
  17. 17.
    Klimov VS, Klimov AS, Kudinov AK (2016) Diagnostika kontaktnoj tochechnoj svarki s ispol’zovaniem nejronnoj seti Hemminga. Ch. 1. Izmerenie svarochnogo soprotivleniya (Diagnostics of contact spot welding using the Hamming neural network. Part. 1. Measurement of the welding resistance). Vestnik mashinostroeniya 10:42–46Google Scholar
  18. 18.
    Klimov VS, Klimov AS, Kudinov AK (2016) Diagnostika kontaktnoj tochechnoj svarki s ispol’zovaniem nejronnoj seti Hemminga. Ch. 2. Modelirovanie nejronnoj seti (Diagnostics of contact spot welding using the Hamming neural network. Part. 2. Simulation of a neural network Bulletin of Machine Building). Vestnik mashinostroeniya 11:32–35Google Scholar
  19. 19.
    Yu J (2011) Online tool wear prediction in drilling operations using selective artificial neural network ensemble model. Neural Comput Appl 20:473–485.  https://doi.org/10.1007/s00521-011-0539-0CrossRefGoogle Scholar
  20. 20.
    Rastorguev DA, Zotov AV, Bobrowskii AV (2017) Simulation and forecasting of wire tool piles fatigue endurance by using neural networks. Proc Eng 206:1443–1451.  https://doi.org/10.1016/j.proeng.2017.10.659CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. V. Zotov
    • 1
  • D. A. Rastorguev
    • 1
  • O. I. Drachev
    • 1
  1. 1.Togliatti State UniversityTogliattiRussia

Personalised recommendations