Advertisement

Experimental Studies on Influence of Natural Frequencies of Oscillations of Mechanical System on Angular Velocity of Pendulum on Rotating Shaft

  • A. I. Artyunin
  • S. V. Eliseev
  • O. Y. Sumenkov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The article describes the results of an experimental study of the natural frequencies of oscillations of a mechanical system influence on the angular velocity of a pendulum mounted with the possibility of free rotation on a rotating shaft of an electric motor. It is established that at a constant moment of friction in the pendulum support, providing for a change in its mass moment of inertia, a mode of motion takes place in which the motor shaft rotates at a working angular velocity, and the angular velocity of the pendulum coincides with one of the natural frequencies of the oscillations of the mechanical system. The studies have also shown that there are ranges of the values of moments of inertia of the pendulum mass. For these moments of inertia, one can observe the establishment of a stable or unstable angular velocity of the pendulum, which is equal to one of the natural frequencies of the oscillations of the mechanical system.

Keywords

Mechanical system Natural oscillation frequency Pendulum Angular velocity Motor shaft Moment of inertia 

References

  1. 1.
    Artyunin AI, Alkhunsaev GG (2005) On the special mode of motion of the rigid rotor with elastic supports and the pendulum auto balancers. MGTU im. N. E. Baumana. Proc High Educ Inst 10:8–14Google Scholar
  2. 2.
    Artyunin AI (2013) The “sticking” effect and the peculiar features of the movement of the rotor with pendulum auto balancers. Sci Edu Bauman MSTU 8:443–454Google Scholar
  3. 3.
    Eliseev SV, Artyunin AI (2016) Mechanic and mathematical modeling of the “sticking” effect of pendulums on a rotating rotor. Bull Belarus State Univ Transp Sci Transp 2:172–175Google Scholar
  4. 4.
    Artyunin AI, Khomenko AP, Eliseev SV, Ermoshenko YuV (2015) A generalized model of vibrational nonlinear mechanics and the effect of a “sticking” of the pendulum at the resonance frequencies of the mechanical system. Mech Eng Eng Educ 1:61–67Google Scholar
  5. 5.
    Blekhman II (1994) Vibratsionnaya mekhanika (Vibration mechanics). Fizmatgiz, MoscowzbMATHGoogle Scholar
  6. 6.
    Blekhman II (2015) Sinkhronizatsiya v prirode i tekhnike (Synchronization in nature and technology). LENAND, MoscowzbMATHGoogle Scholar
  7. 7.
    Ragulskis KM (1963) Mekhanizmy na vibriruyushchem osnovanii. Voprosy dinamiki i ustoichivosti (Mechanisms on a vibrating base. Questions of dynamics and stability). IPEEE of Lithuanian SSR Academy of Sciences, KaunasGoogle Scholar
  8. 8.
    Ragulskis KM (ed) (1965) Sinkhronizatsiya mekhanicheskikh sistem (Synchronization of mechanical systems), vol 1. Mintis, VilniusGoogle Scholar
  9. 9.
    Ragulskis KM (ed) (1967) Sinkhronizatsiya mekhanicheskikh sistem (Synchronization of mechanical systems), vol 2. Mintis, VilniusGoogle Scholar
  10. 10.
    Sommerfeld A (1904) Beitrage Zum Dinamischen Ausbau der Festigkeislehre. Z Ver Dtsch Ing 48(18):631–636Google Scholar
  11. 11.
    Kononenko VO (1964) Kolebatel’nye sistemy s ogranichennym vozbuzhdeniem (Vibrational systems with limited excitation). Nauka, MoscowGoogle Scholar
  12. 12.
    Blekhman II (ed) (1979) Vibratsii v tekhnike (Vibration in engineering), vol 2. Mashinostroenie, MoscowGoogle Scholar
  13. 13.
    Artyunin AI (1993) Issledovanie rotora s avtobalansirom (Investigation of the rotor with an auto balance). Izv Vuzov. Mech Eng 1:15–18Google Scholar
  14. 14.
    Artyunin AI, Alkhunsaev GG, Serebrennikov KV (2005) Primenenie metoda razdeleniya dvizhenii dlya issledovaniya dinamiki rotornoi sistemy s gibkim rotorom i mayatnikovym avtobalansirom (Application of the method of separation of movements to study the dynamics of the rotor system with a flexible rotor and a pendulum auto balance). Izv Vuzov. Mech Eng 9:8–14Google Scholar
  15. 15.
    Artyunin AI, Alkhunsaev GG (2005) Ob osobom rezhime dvizheniya zhestkogo rotora s uprugimi oporami i mayatnikovym avtobalansirom (On the special mode of motion of the rigid rotor with elastic supports and the pendulum auto balancers). Izv Vuzov. Mech Eng 10:8–14Google Scholar
  16. 16.
    Artyunin AI, Eliseev SV (2013) Effect of “crawling” and peculiarities of motion of a rotor with pendular self-balancers. Appl Mech Mater 373–375:38–42CrossRefGoogle Scholar
  17. 17.
    Artyunin AI (2013) Effekt «zastrevaniya» i osobennosti dvizheniya rotora s mayatnikovym avtobalansirom (The “sticking” effect and the peculiar features of the movement of the rotor with the pendulum auto balancer). Sci Public Bauman MSTU Sci Educ 8:443–454Google Scholar
  18. 18.
    Artyunin AI, Khomenko AP, Eliseev SV, Ermoshenko YuV (2015) Obobshchennaya model’ vibratsionnoi nelineinoi mekhaniki i effekt «zastrevaniya» mayatnika na rezonansnykh chastotakh mekhanicheskoi sistemy (A generalized model of vibrational nonlinear mechanics and the effect of a “sticking” of the pendulum at the resonance frequencies of the mechanical system). Mech Eng Eng Educ 1:61–67Google Scholar
  19. 19.
    Artyunin AI, Ermoshenko YuV, Popov SI (2015) Eksperimental’nye issledovaniya effekta «zastrevaniya» mayatnika na rezonansnykh chastotakh mekhanicheskoi sistemy (Experimental studies of the effect of the “sticking” of the pendulum at the resonant frequencies of the mechanical system). Mod Tech Syst Anal Model 2:20–25Google Scholar
  20. 20.
    Eliseev SV, Artyunin AI (2016) Mekhaniko-matematicheskoe modelirovanie effekta «zastrevaniya» mayatnikov na vrashchayushchemsya rotore (Mechanic and mathematical modeling of the “sticking” effect of pendulums on a rotating rotor). Bull Belarus Transp Univ Sci Transp 2:172–175Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. I. Artyunin
    • 1
  • S. V. Eliseev
    • 1
  • O. Y. Sumenkov
    • 2
  1. 1.Irkutsk State Transport UniversityIrkutskRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations