Advertisement

Estimation of Geometrical Torsion Rigidity of Triangular and Rectangular Sections Using Interpolation Method

  • A. V. Korobko
  • S. Yu. Savin
  • Yu. E. Balikhina
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The article considers the problem on a pure torsion of elastic prismatic beam with arbitrary convex contour in the isoperimetric form. It is proved that for isometric sections with a convex contour, the normalized geometrical torsion rigidity depends on one parameter only—the form factor. The sections in the form of isosceles and rectangular triangles, rectangles, and parallelograms are considered. Graphical comparison of the given geometrical rigidity of the examined sections with the value reciprocal of the form factor displayed the real similarity of these graphs. Analysis of these graphs provides the conclusion that all the range of values of the normalized geometrical rigidity of parallelogram sections is limited from above with values ik for rectangular sections, and from below—for the rhombic sections. Applying the method of geometrical modeling rigidity of the sections by a section form, we suggest the interpolation method to determine the given geometrical rigidity of the sections by the form factor. The obtained results are otherwise satisfactory when performing engineering calculations.

Keywords

Pure torsion Elasticity Prismatic beams Torsion rigidity Form factor Interpolation method 

References

  1. 1.
    Arutjunjan NH, Abramjan BL (1964) Elastic body torsion. Physmatgis, Moscow (in Russ.)Google Scholar
  2. 2.
    Polya G (1948) Torsional rigidity, principal frequency, electrostatic capacity and symmetrization. Quart of Appl Math I:267–277MathSciNetCrossRefGoogle Scholar
  3. 3.
    Sobolev VV, Paramonov AA (2011) Numerical method of solution of Saint-Venant’s problem on bar torsion of doubly connected section by conformal mapping method. Bull Tomskogo Gosudarstvennogo Univ 2:25–37 (in Russ.)Google Scholar
  4. 4.
    Evstifeev VV, Teperin LL, Teperina LN (2011) Usage of hydraulic analogy to determine geometrical rigidity and flexural center of prismatic bars. TVF LXXXV 1:18–24 (in Russ.)Google Scholar
  5. 5.
    Morassi A (1999) Torsion of thin tubes with multicellular cross-section. J Mech 34(2):115–132MathSciNetzbMATHGoogle Scholar
  6. 6.
    Morassi A, Freddi L, Paroni R (2004) Thin-walled beams: the case of the rectangular cross-section. J Elast 76:45–66MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wang CY (1998) Torsion of Tubes of arbitrary shape. J Solids Struct 35(7–8):719–731CrossRefGoogle Scholar
  8. 8.
    Korobko AV (1999) Geometrical modeling of area form in two-dimensional problems on elasticity theory. ASV, MoscowGoogle Scholar
  9. 9.
    Korobko VI (1986) Graphical representation of boundaries variation of geometrical rigidity of sections in the form of convex figures under torsion. News High Edu Inst Eng 3:3–7 (in Russ.)Google Scholar
  10. 10.
    Korobko VI, Korobko AV, Chernyaev AA (2016) Isoperimetric properties of the torsion rigidity of convex section. Proc Eng 150:1648–1656.  https://doi.org/10.1016/j.proeng.2016.07.146CrossRefGoogle Scholar
  11. 11.
    Korobko AV, Savin SYu, Ivlev IA (2017) Stability analysis of orthotropic rectangular plates compressed all over the contour. J Appl Eng Sci 15(3):332–338.  https://doi.org/10.5937/jaes15-14603CrossRefGoogle Scholar
  12. 12.
    Korobko VI, Korobko AV, Chernyaev AA, Savin SY (2015) Determination of maximum deflection at cross bending parallelogram plates using conformal radius ratio interpolation technique. J Serb Soc Comp Mech 9(2):36–45.  https://doi.org/10.5937/jsscm1501036KCrossRefGoogle Scholar
  13. 13.
    Korobko VI, Korobko AV, Savin SY, Chernyaev AA (2016) Solving the transverse bending problem of thin elastic orthotropic plates with form factor interpolation method. J Serb Soc Comp Mech 10(2):9–17.  https://doi.org/10.5937/jsscm1602009KCrossRefGoogle Scholar
  14. 14.
    Korobko AV, Chernyaev AA, Korobko VI (2017) Determination of basic dynamic vibration frequency at trapezoid plates using conformal radius ratio interpolation technique. Proc Eng 206:25–30.  https://doi.org/10.1016/j.proeng.2017.10.432CrossRefGoogle Scholar
  15. 15.
    Chernyaev AA (2017) Improving the accuracy of geometric interpolation for determining fundamental frequency of parallelogram plates vibration. Proc Eng 206:31–34.  https://doi.org/10.1016/j.proeng.2017.10.433CrossRefGoogle Scholar
  16. 16.
    Korobko VI, Savin SY, Ivlev IA (2017) Stability analysis of orthotropic plates by the form factor interpolation method. Proc Eng 206:924–928.  https://doi.org/10.1016/j.proeng.2017.10.573CrossRefGoogle Scholar
  17. 17.
    Korobko AV, Balikhina YE (2017) The definition of the geometric torsional rigidity for sections in the shape of the figure intermediate between a circle and a regular polygon. Stroitelstvo i Rekonstruktsiya 5(63):21–26 (in Russ.)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. V. Korobko
    • 1
  • S. Yu. Savin
    • 2
  • Yu. E. Balikhina
    • 1
  1. 1.Orel State University Named after I.S. TurgenevOrelRussia
  2. 2.South-West State UniversityKurskRussia

Personalised recommendations