Advertisement

Optimization of Piston Compressor Geometric Size Using the Genetic Algorithm Method

  • O. V. Dushko
  • G. V. Voronkova
  • S. S. Rekunov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The study of strained-deformed state of piston compressor and a compressor-cylinder system is conducted. For that, the case of optimization of piston compressor geometric size is considered (the search of optimal configuration of piston contact zone) with the use of the genetic algorithm method, allowing to evenly spread the friction forces across the outer surface of the compressor, that occurs during the mechanism use. The methodology of the study of piston compressors in deformed strained state is proposed with adding strain function into geometric and physical equations of the classic linear elasticity theory. The comparison of the results has shown that the change approximation of elasticity module from the thickness of modified layer is the same as the experimental values. The use of target function in the form of weighed solution combination allows determining optimum compressor configuration for the most even spread of contact strains in the process of work and erasing the material.

Keywords

Contact zone Compressor Optimisation Genetic algorithm 

References

  1. 1.
    Khudayarov BA, Bandurin NG (2007) Numerical investigation of nonlinear vibrations of viscoelastic plates and cylindrical panels in a gas flow. J Appl Mech Tech Phys 48(2):279–284CrossRefGoogle Scholar
  2. 2.
    Fomenko NA, Burlachenko OV, Ivanov M (2017) Protection system of hydraulic drive of road construction machinery. In: ICMTMTE 2017.  https://doi.org/10.1051/matecconf/201712906001CrossRefGoogle Scholar
  3. 3.
    Evenko VI, Evenko VV (2006) Analysis of indicated efficiency of piston compressors. Chem Pet Eng 42(7–8):451–456CrossRefGoogle Scholar
  4. 4.
    Fayrushin ShZ, Baykov IR, Kitayev SV (2016) Opredelenie pokazatelej nadjozhnosti porshnevyh kompressorov (Determining reliability indices of piston compressors). Oil Gas Bus 14(2):120–124Google Scholar
  5. 5.
    Martyushev NV, Petrenko YuN, Egorov YuP (2008) Proizvodstvo porshnevyh kolec kompressorov vysokogo davlenija (Production of piston rings for high-pressure compressors). Foundry 8:24–26Google Scholar
  6. 6.
    Ivlev VI, Nelyubin AP, Misyurin SY (2017) Experimental research and mathematical modeling of scroll machine in air motor mode. Mech Mach Sci 44:145–151CrossRefGoogle Scholar
  7. 7.
    Tikhvinskaya AYu (2006) Metod ocenki izmenenija linejnyh razmerov detalej pri primenenii lazernoj obrabotki poverhnostej v rezhime mikrooplavlenija (The method of evaluating the alternations of the linear dimensions of parts while using the laser treatment of surfaces in the microfusing mode). Vestn VolgGASU 6:186–189Google Scholar
  8. 8.
    Lugovaya VA, Lobanova YT, Lukina IG (2012) Vysokoiznosostojkie pokrytija na osnove nitridov i karboboridov tugoplavkih metallov (High durable covers based on nitride and karboborid of refractory metals). Vestn VolgGASU 27:9–15Google Scholar
  9. 9.
    Lugovaya VA, Oreshkin VD, Lobanova YT (2010) Vlijanie termicheskoj obrabotki na tverdost’ i iznosostojkost’ kompozicionnyh pokrytij na osnove karboboridov tugoplavkih metallov (Effect of heat treatment on hardness and wear resistance composite coatings based on refractory karboborids of metals). Vestn VolgGASU 20:76–80Google Scholar
  10. 10.
    Pashaev AM, Dzhanahmedov AH, Aliev MI (2008) Razrabotka kriterija po opredeleniju zazora mezhdu cilindrom i porshnem kompressornyh mashin (Development of criterion for backlash determination between cylinder and piston of compressor machine). Assem Mech Eng Instrum Making 11:31–34Google Scholar
  11. 11.
    Dzhinchvelashvili GA et al (2010) Postroenie adekvatnoj raschetnoj modeli sooruzhenija putem provedenija identifikacionnogo jeksperimenta (Construction of adequate settlement dynamic model of a construction by caring out of identification experiment). Vest MGSU 4–5:215–220Google Scholar
  12. 12.
    Khudayarov BA, Bandurin NG (2005) Nelinejnyj flatter vjazkouprugih ortotropnyh cilindricheskih panelej (Nonlinear flutter of viscoelastic orthotropic cylindrical panels). Math Model 17(10):79–86zbMATHGoogle Scholar
  13. 13.
    Kurbatskiy EN, San LT, Kupchikova NV (2011) Metodika raschjota balok s kusochno-postojannymi parametrami, osnovannaja na svojstvah izobrazhenij Fur’e finitnyh funkcij (The method for calculating beams with piecewise constant parameters, based on the properties of Fourier images of finite functions). In: The scientific potential of the regions for the modernization service, 1(1), Astrakhan, 53 pGoogle Scholar
  14. 14.
    Dzhinchvelashvili GA (2016) Reshenie zadach prikladnoj mehaniki s pomoshh’ju metodov teorii podobija i analiza razmernostej (Solution to the problems of applied mechanics using the similarity theory and dimensional analysis). Civil Engineering: science and education, 2, 5 pGoogle Scholar
  15. 15.
    Il’in VP, Karpov VV, Maslennikov AM (1990) Chislennye metody resheniya zadach stroitelnoy mehaniki (Numerical methods for solving problems of structural mechanics). High School, MinskGoogle Scholar
  16. 16.
    Bandurin NG, Gureeva NA (2012) Realizacija smeshannogo MKJe pri raschete plosko nagruzhennyh konstrukcij s uchetom geometricheskoj nelinejnosti (Realization of a mixed FEM for the calculation of plane loaded structures with allowance for geometric nonlinearity). Int J Exp Educ 5:89–92Google Scholar
  17. 17.
    Timoshenko SP, Voynovskiy-Kriger S (1963) Plastinki i obolochki (Plates and shells). MoscowGoogle Scholar
  18. 18.
    Trushin SI (2003) Raschyot plastin i pologih obolochek metodami nelineynogo programmirovaniya (Calculation of plates and shallow shells by methods of nonlinear programming). Bull RUDN Univ 2:40–45Google Scholar
  19. 19.
    Samarskiy AA, Nikolaev ES (1978) Metody resheniya setochnyh uravneniy (Methods of solving the mesh equations). Science, MoscowGoogle Scholar
  20. 20.
    Rodin SI, Belikov GI (2010) Jevoljucionnye metody dlja sozdanija optimal’nyh prostranstvennyh sterzhnevyh sistem (Evolutionary methods for creating optimal spatial rod systems). In: Collection of scientific articles. Russian Academy of Architecture and Construction Sciences, Southern Regional Office RAASN, the Volgograd Region Administration, Volgograd State University of Architecture and Civil Engineering, Volgograd, 79pGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • O. V. Dushko
    • 1
  • G. V. Voronkova
    • 1
  • S. S. Rekunov
    • 1
  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations