Advertisement

Catalysis

  • Swe Jyan Teh
  • Tong Ling Tan
  • Chin Wei Lai
  • Kian Mun Lee
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Water contamination is one of the major environmental issues due to a drastic increase in world population, industrialization, deforestations, geographical changes, etc. The high rates of water wastage in domestic, industrial and agriculture negatively impact the sustainability of water resources. Since its discovery, carbon nanotubes (CNTs) are attracting a broad range of scientific and industrial activity due to their fascinating physicochemical properties, which can serve as a platform for water remediation. In this chapter, the properties and strengths of CNTs as catalyst for water purification are discussed. Moreover, the current limitations and challenges of CNTs in catalytic water purification processes are also described for future developments.

References and Future Readings

  1. 1.
    Mekonnen, M.M., Hoekstra, A.Y.: Four billion people facing severe water scarcity. Sci. Adv. 2(2), e1500323 (2016)CrossRefGoogle Scholar
  2. 2.
    Veettil, A.V., Mishra, A.K.: Water security assessment using blue and green water footprint concepts. J. Hydrol. 542, 589–602 (2016)CrossRefGoogle Scholar
  3. 3.
    Ong, Y.T., Ahmad, A.L., Zein, S.H.S., Tan, S.H.: A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz. J. Chem. Eng. 27(2), 227–242 (2010)CrossRefGoogle Scholar
  4. 4.
    Bayen, S., Zhang, H., Desai, M.M., Ooi, S.K., Kelly, B.C.: Occurrence and distribution of pharmaceutically active and endocrine disrupting compounds in Singapore’s marine environment: Influence of hydrodynamics and physical–chemical properties. Environ. Pollut. 182(Supplement C), 1–8 (2013)Google Scholar
  5. 5.
    Simate, G.S., Iyuke, S.E., Ndlovu, S., Heydenrych, M., Walubita, L.F.: Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ. Int. 39(1), 38–49 (2012)CrossRefGoogle Scholar
  6. 6.
    Qu, X., Alvarez, P.J.J., Li, Q.: Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)CrossRefGoogle Scholar
  7. 7.
    Rao, C.N.R., Cheetham, A.K.: The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Oxford University, Sons (2006)Google Scholar
  8. 8.
    Bergmann, C.P., Machado, F.M.: Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications. Springer, Berlin (2015)Google Scholar
  9. 9.
    Choudhary, N., Hwang, S., Choi, W.: Carbon Nanomaterials: A Review. Handbook of Nanomaterials Properties. Springer, USA (2014)Google Scholar
  10. 10.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354 (1991)Google Scholar
  11. 11.
    Dai, H.: Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35(12), 1035–1044 (2002)CrossRefGoogle Scholar
  12. 12.
    De Volder, M.F., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRefGoogle Scholar
  13. 13.
    Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., et al.: Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9(1), 393 (2014)CrossRefGoogle Scholar
  14. 14.
    Ganesh, E.N. Single walled and multi walled carbon nanotube structure. Synthesis and applications. 2 (2013)Google Scholar
  15. 15.
    Czech, B., Buda, W.: Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environ. Res. 137(Supplement C), 176–84 (2015)Google Scholar
  16. 16.
    Da Dalt, S., Alves, A.K., Bergmann, C.P.: Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites. Mater. Res. Bull. 48(5), 1845–1850 (2013)CrossRefGoogle Scholar
  17. 17.
    Kim, K.-H., Ihm, S.-K.: Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J. Hazard. Mater. 186(1), 16–34 (2011)CrossRefGoogle Scholar
  18. 18.
    Sun, H., Kwan, C., Suvorova, A., Ang, H.M., Tadé, M.O., Wang, S.: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Appl. Catal. B 154–155, 134–141 (2014)CrossRefGoogle Scholar
  19. 19.
    Tu, Y., Xiong, Y., Tian, S., Kong, L., Descorme, C.: Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts. J. Hazard. Mater. 276, 88–96 (2014)CrossRefGoogle Scholar
  20. 20.
    Das, R., Abd Hamid, S.B., Ali, M.E., Ismail, A.F., Annuar, M.S.M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)CrossRefGoogle Scholar
  21. 21.
    Hirlekar, R., Yamagar, M., Garse, H., Vij, M., Kadam, V.: Carbon nanotubes and its applications: a review. Asian J. Pharm. Clin. Res. 2(4), 17–27 (2009)Google Scholar
  22. 22.
    Liu, X., Wang, M., Zhang, S., Pan, B.: Application potential of carbon nanotubes in water treatment: A review. J. Environ. Sci. 25(7), 1263–1280 (2013)CrossRefGoogle Scholar
  23. 23.
    Ilani, S., McEuen, P.L.: Electron transport in carbon nanotubes. Ann. Rev. Condens. Matter Phys. 1(1), 1–25 (2010)CrossRefGoogle Scholar
  24. 24.
    Ma, Y., Ma, J., Lv, Y., Liao, J., Ji, Y., Bai, H.: Effect of mono vacancy defect on the charge carrier mobility of carbon nanotubes: A case study on (10, 0) tube from first-principles. Superlattices Microstruct. 99, 140–144 (2016)CrossRefGoogle Scholar
  25. 25.
    Derycke, V., Martel, R., Appenzeller, J., Avouris, P.: Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 80(15), 2773–2775 (2002)CrossRefGoogle Scholar
  26. 26.
    Fan, X., Liu, Y., Quan, X., Zhao, H., Chen, S., Yi, G., et al.: High desalination permeability, wetting and fouling resistance on superhydrophobic carbon nanotube hollow fiber membrane under self-powered electrochemical assistance. J. Membr. Sci. 514, 501–509 (2016)CrossRefGoogle Scholar
  27. 27.
    Vecitis, C.D., Gao, G., Liu, H.: Electrochemical carbon nanotube filter for adsorption, desorption, and oxidation of aqueous dyes and anions. J. Phys. Chem. C. 115(9), 3621–3629 (2011)CrossRefGoogle Scholar
  28. 28.
    Bakr, A.R., Rahaman, M.S.: Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions. Chemosphere 153, 508–520 (2016)CrossRefGoogle Scholar
  29. 29.
    Vecitis, C.D., Schnoor, M.H., Rahaman, M.S., Schiffman, J.D., Elimelech, M.: Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ. Sci. Technol. 45(8), 3672–3679 (2011)CrossRefGoogle Scholar
  30. 30.
    Rahaman, M.S., Vecitis, C.D., Elimelech, M.: Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ. Sci. Technol. 46(3), 1556–1564 (2012)CrossRefGoogle Scholar
  31. 31.
    Szpyrkowicz, L., Kaul, S.N., Neti, R.N.: Tannery wastewater treatment by electro-oxidation coupled with a biological process. J. Appl. Electrochem. 35(4), 381–390 (2005)CrossRefGoogle Scholar
  32. 32.
    Ananthakumar, S., Ramkumar, J., Babu, S.M.: Semiconductor nanoparticles sensitized TiO2 nanotubes for high efficiency solar cell devices. Renewable and Sustainable Energy Reviews. 57(Supplement C), 1307–21 (2016)Google Scholar
  33. 33.
    Kim, W., Tachikawa, T., Kim, H., Lakshminarasimhan, N., Murugan, P., Park, H., et al.: Visible light photocatalytic activities of nitrogen and platinum-doped TiO2: synergistic effects of co-dopants. Appl. Catal. B: Environ. 147(Supplement C), 642–50 (2014)Google Scholar
  34. 34.
    Tanabe, I., Ozaki, Y.: Consistent changes in electronic states and photocatalytic activities of metal (Au, Pd, Pt)-modified TiO 2 studied by far-ultraviolet spectroscopy. Chem. Commun. 50(17), 2117–2119 (2014)CrossRefGoogle Scholar
  35. 35.
    Peigney, A., Laurent, C., Flahaut, E., Bacsa, R.R., Rousset, A.: Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4), 507–514 (2001)CrossRefGoogle Scholar
  36. 36.
    Xu, H., Wang, C., Song, Y., Zhu, J., Xu, Y., Yan, J., et al.: CNT/Ag 3 PO 4 composites with highly enhanced visible light photocatalytic activity and stability. Chem. Eng. J. 241, 35–42 (2014)CrossRefGoogle Scholar
  37. 37.
    Xia, J., Di, J., Yin, S., Li, H., Xu, L., Xu, Y., et al.: Improved visible light photocatalytic activity of MWCNT/BiOBr composite synthesized via a reactable ionic liquid. Ceram. Int. 40(3), 4607–4616 (2014)CrossRefGoogle Scholar
  38. 38.
    Hu, S., Li, S., Xu, K., Jiang, W., Zhang, J., Liu, J.: MWCNTs/BiOCOOH composites with improved sunlight photocatalytic activity. Mater. Lett. 191(Supplement C), 157–160 (2017)Google Scholar
  39. 39.
    Su, M., He, C., Zhu, L., Sun, Z., Shan, C., Zhang, Q., et al.: Enhanced adsorption and photocatalytic activity of BiOI–MWCNT composites towards organic pollutants in aqueous solution. J. Hazard. Mater. 229, 72–82 (2012)CrossRefGoogle Scholar
  40. 40.
    Dai, K., Li, D., Geng, L., Liang, C., Liu, Q. Facile preparation of Bi2MoO6/multi-walled carbon nanotube nanocomposite for enhancing photocatalytic performance. Mater. Lett. 160(Supplement C), 124–7 (2015)Google Scholar
  41. 41.
    Zhang, X., Li, S., Hu, S., Chen, J., Jiang, W., Zhang, J., et al.: Flower-like MWCNTs/Bi 2 O 2 CO 3 composites with enhanced photocatalytic activity under simulated solar light irradiation. Mater. Lett. 185, 50–53 (2016)CrossRefGoogle Scholar
  42. 42.
    Yue, L., Wang, S., Shan, G., Wu, W., Qiang, L., Zhu, L.: Novel MWNTs–Bi 2 WO 6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water. Appl. Catal. B 176, 11–19 (2015)CrossRefGoogle Scholar
  43. 43.
    Di, J., Ji, M., Xia, J., Li, X., Fan, W., Zhang, Q., et al.: Bi4O5Br2 ultrasmall nanosheets in situ strong coupling to MWCNT and improved photocatalytic activity for tetracycline hydrochloride degradation. J. Mol. Catal. A: Chem. 424(Supplement C), 331–41 (2016)Google Scholar
  44. 44.
    Xu, Y., Xu, H., Wang, L., Yan, J., Li, H., Song, Y., et al.: The CNT modified white C 3 N 4 composite photocatalyst with enhanced visible-light response photoactivity. Dalton Trans. 42(21), 7604–7613 (2013)CrossRefGoogle Scholar
  45. 45.
    Xia, Y., Li, Q., Wu, X., Lv, K., Tang, D., Li, M.: Facile synthesis of CNTs/CaIn 2 S 4 composites with enhanced visible-light photocatalytic performance. Appl. Surf. Sci. 391, 565–571 (2017)CrossRefGoogle Scholar
  46. 46.
    Ye, A., Fan, W., Zhang, Q., Deng, W., Wang, Y.: CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catal. Sci. Technol. 2(5), 969–978 (2012)CrossRefGoogle Scholar
  47. 47.
    Zhang, X., Feng, M., Qu, R., Liu, H., Wang, L., Wang, Z.: Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe 2 O 4/MWCNTs. Chem. Eng. J. 301, 1–11 (2016)CrossRefGoogle Scholar
  48. 48.
    Cui, X., Wang, Y., Jiang, G., Zhao, Z., Xu, C., Duan, A., et al.: The encapsulation of CdS in carbon nanotubes for stable and efficient photocatalysis. J. Mater. Chem. A. 2(48), 20939–20946 (2014)CrossRefGoogle Scholar
  49. 49.
    Vamvasakis, I., Georgaki, I., Vernardou, D., Kenanakis, G., Katsarakis, N.: Synthesis of WO3 catalytic powders: evaluation of photocatalytic activity under NUV/visible light irradiation and alkaline reaction pH. J. Sol-Gel. Sci. Technol. 76(1), 120–128 (2015)CrossRefGoogle Scholar
  50. 50.
    Tang, Y., Tian, J., Malkoske, T., Le, W., Chen, B.: Facile ultrasonic synthesis of novel zinc sulfide/carbon nanotube coaxial nanocables for enhanced photodegradation of methyl orange. J. Mater. Sci. 52(3), 1581–1589 (2017)CrossRefGoogle Scholar
  51. 51.
    Wang, S., Shi, X., Shao, G., Duan, X., Yang, H., Wang, T.: Preparation, characterization and photocatalytic activity of multi-walled carbon nanotube-supported tungsten trioxide composites. J. Phys. Chem. Solids 69(10), 2396–2400 (2008)CrossRefGoogle Scholar
  52. 52.
    Levec, J., Pintar, A.: Catalytic wet-air oxidation processes: a review. Catal. Today 124(3–4), 172–184 (2007)CrossRefGoogle Scholar
  53. 53.
    Hua, L., Ma, H., Zhang, L.: Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3. Chemosphere 90(2), 143–149 (2013)CrossRefGoogle Scholar
  54. 54.
    Li, Y., Zhang, F., Liang, X., Yediler, A.: Chemical and toxicological evaluation of an emerging pollutant (enrofloxacin) by catalytic wet air oxidation and ozonation in aqueous solution. Chemosphere 90(2), 284–291 (2013)CrossRefGoogle Scholar
  55. 55.
    Erjavec, B., Kaplan, R., Djinović, P., Pintar, A.: Catalytic wet air oxidation of bisphenol A model solution in a trickle-bed reactor over titanate nanotube-based catalysts. Appl. Catal. B 132–133, 342–352 (2013)CrossRefGoogle Scholar
  56. 56.
    Zimmermann, F.: New waste disposal process. Chem. Eng. 65(8), 117–121 (1958)Google Scholar
  57. 57.
    Leng, J., Wang, W.M., Lu, L.M., Bai, L., Qiu, X.L. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor. Nanoscale Res. Lett. 9 (2014)Google Scholar
  58. 58.
    Yang, S., Li, X., Zhu, W., Wang, J., Descorme, C.: Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon 46(3), 445–452 (2008)CrossRefGoogle Scholar
  59. 59.
    Fu, J., Kyzas, G.Z.: Wet air oxidation for the decolorization of dye wastewater: an overview of the last two decades. Chin. J. Catal. 35(1), 1–7 (2014)CrossRefGoogle Scholar
  60. 60.
    Yang, S., Zhu, W., Li, X., Wang, J., Zhou, Y.: Multi-walled carbon nanotubes (MWNTs) as an efficient catalyst for catalytic wet air oxidation of phenol. Catal. Commun. 8(12), 2059–2063 (2007)CrossRefGoogle Scholar
  61. 61.
    Mestl, G., Maksimova, N.I., Keller, N., Roddatis, V.V., Schlögl, R.: Carbon nanofilaments in heterogeneous catalysis: an industrial application for new carbon materials? Angew. Chem. Int. Ed. 40(11), 2066–2068 (2001)CrossRefGoogle Scholar
  62. 62.
    Rivas, F., Kolaczkowski, S., Beltran, F., McLurgh, D.: Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chem. Eng. Sci. 53(14), 2575–2586 (1998)CrossRefGoogle Scholar
  63. 63.
    Garcia, J., Gomes, H.T., Serp, P., Kalck, P., Figueiredo, J.L., Faria, J.L.: Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation. Carbon 44(12), 2384–2391 (2006)CrossRefGoogle Scholar
  64. 64.
    Ovejero, G., Sotelo, J.L., Rodríguez, A., Díaz, C., Sanz, R., García, J.: Platinum catalyst on multiwalled carbon nanotubes for the catalytic wet air oxidation of phenol. Ind. Eng. Chem. Res. 46(20), 6449–6455 (2007)CrossRefGoogle Scholar
  65. 65.
    Zhang, Y., Ma, D., Wu, J., Zhang, Q., Xin, Y., Bao, N.: One–step preparation of CNTs/InVO 4 hollow nanofibers by electrospinning and its photocatalytic performance under visible light. Appl. Surf. Sci. 353, 1260–1268 (2015)CrossRefGoogle Scholar
  66. 66.
    Tasviri, M., Sajadi-Hezave, Z.: SbSI nanowires and CNTs encapsulated with SbSI as photocatalysts with high visible-light driven photoactivity. Mol. Catal. 436, 174–181 (2017)CrossRefGoogle Scholar
  67. 67.
    Kim, S.P., Choi, M.Y., Choi, H.C.: Characterization and photocatalytic performance of SnO2–CNT nanocomposites. Appl. Surf. Sci. 357(Part A), 302–8 (2015)Google Scholar
  68. 68.
    Réti, B., Mogyorósi, K., Dombi, A., Hernádi, K.: Substrate dependent photocatalytic performance of TiO2/MWCNT photocatalysts. Appl. Catal. A: General. 469(Supplement C), 153–8 (2014)Google Scholar
  69. 69.
    Natarajan, T.S., Lee, J.Y., Bajaj, H.C., Jo, W.-K., Tayade, R.J.: Synthesis of multiwall carbon nanotubes/TiO2 nanotube composites with enhanced photocatalytic decomposition efficiency. Catal. Today. 282(Part 1), 13–23 (2017)Google Scholar
  70. 70.
    Farhadian, M., Sangpour, P., Hosseinzadeh, G.: Preparation and photocatalytic activity of WO3-MWCNT nanocomposite for degradation of naphthalene under visible light irradiation. RSC Advances. 6(45), 39063–39073 (2016)CrossRefGoogle Scholar
  71. 71.
    Wang, X., Chen, Y., Zheng, B., Qi, F., He, J., Yu, B., et al.: Significant enhancement of photocatalytic activity of multi-walled carbon nanotubes modified WSe 2 composite. Mater. Lett. 197, 67–70 (2017)CrossRefGoogle Scholar
  72. 72.
    Chen, C.-H., Liang, Y.-H., Zhang, W.-D.: ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation. J. Alloy. Compd. 501(1), 168–172 (2010)CrossRefGoogle Scholar
  73. 73.
    Saleh, T.A., Gondal, M., Drmosh, Q., Yamani, Z., Al-Yamani, A.: Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chem. Eng. J. 166(1), 407–412 (2011)CrossRefGoogle Scholar
  74. 74.
    Seyed Dorraji, M.S., Amani-Ghadim, A.R., Rasoulifard M.H., Taherkhani, S., Daneshvar, H.: The role of carbon nanotube in zinc stannate photocatalytic performance improvement: experimental and kinetic evidences. Appl. Catal. B. 205(Supplement C), 559–68 (2017)Google Scholar
  75. 75.
    Anku, W.W., Oppong, S.O.-B., Shukla, S.K., Agorku E.S., Govender, P.P.: Cobalt doped ZrO2 decorated multiwalled carbon nanotube: a promising nanocatalyst for photodegradation of indigo carmine and eosin Y dyes. Prog. Nat. Sci: Mater. Int. 26(4), 354–61 (2016)Google Scholar
  76. 76.
    Bilal, M., Asgher, M., Iqbal, H.M.N., Hu, H., Zhang, X.: Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environ. Sci. Pollut. Res. 24(8), 7035–7041 (2017)CrossRefGoogle Scholar
  77. 77.
    Bilal, M., Asgher, M., Parra-Saldivar, R., Hu, H., Wang, W., Zhang, X., et al.: Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants—A review. Sci. Total Environ. 576(Supplement C), 646–59 (2017)Google Scholar
  78. 78.
    Calza, P., Zacchigna, D., Laurenti, E.: Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environ. Sci. Pollut. Res. 23(23), 23742–23749 (2016)CrossRefGoogle Scholar
  79. 79.
    Alneyadi, A.H., Ashraf, S.S.: Differential enzymatic degradation of thiazole pollutants by two different peroxidases – A comparative study. Chem. Eng. J. 303, 529–538 (2016)CrossRefGoogle Scholar
  80. 80.
    Kadri, T., Rouissi, T., Brar, S., Cledón, M., Sarma, S., Verma, M.: Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review (2016)Google Scholar
  81. 81.
    Daumann, L.J., Larrabee, J.A., Ollis, D., Schenk, G., Gahan, L.R.: Immobilization of the enzyme GpdQ on magnetite nanoparticles for organophosphate pesticide bioremediation. J. Inorg. Biochem. 131(Supplement C), 1–7 (2014)Google Scholar
  82. 82.
    Gao, Y., Truong, Y.B., Cacioli, P., Butler, P., Kyratzis I.L.: Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles. Enzyme Microb. Technol. 54(Supplement C), 38–44 (2014)Google Scholar
  83. 83.
    Schenk, G., Mateen, I., Ng, T.-K., Pedroso, M.M., Mitić, N., Jafelicci, M., et al.: Organophosphate-degrading metallohydrolases: structure and function of potent catalysts for applications in bioremediation. Coord. Chem. Rev. 317, 122–131 (2016)CrossRefGoogle Scholar
  84. 84.
    Badieyan, S., Wang, Q., Zou, X., Li, Y., Herron, M., Abbott, N.L., et al.: Engineered surface-immobilized enzyme that retains high levels of catalytic activity in air. J. Am. Chem. Soc. 139(8), 2872–2875 (2017)CrossRefGoogle Scholar
  85. 85.
    Jugder, B.-E., Ertan, H., Lee, M., Manefield, M., Marquis, C.P.: Reductive dehalogenases come of age in biological destruction of organohalides. Trends Biotechnol. 33(10), 595–610 (2015)CrossRefGoogle Scholar
  86. 86.
    DeLouise, L.A., Miller, B.L.: Enzyme immobilization in porous silicon: quantitative analysis of the kinetic parameters for glutathione-s-transferases. Anal. Chem. 77(7), 1950–1956 (2005)CrossRefGoogle Scholar
  87. 87.
    Martínková, L., Kotik, M., Marková, E., Homolka, L.: Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: a review. Chemosphere. 149(Supplement C), 373–82 (2016)Google Scholar
  88. 88.
    Pitzalis, F., Monduzzi, M., Salis, A.: A bienzymatic biocatalyst constituted by glucose oxidase and Horseradish peroxidase immobilized on ordered mesoporous silica. Microporous Mesoporous Mater. 241(Supplement C), 145–54 (2017)Google Scholar
  89. 89.
    Prasetyo, E.N., Semlitsch, S., Nyanhongo, G.S., Lemmouchi, Y., Guebitz, G.M.: Laccase oxidation and removal of toxicants released during combustion processes. Chemosphere. 144(Supplement C), 652–60 (2016)Google Scholar
  90. 90.
    Thatoi, H., Das, S., Mishra, J., Rath, B.P., Das, N.: Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J. Environ. Manage. 146, 383–399 (2014)CrossRefGoogle Scholar
  91. 91.
    Das, R., Abd Hamid, S.B., Ali, M.E., Ismail, A.F., Annuar, M.S.M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination. 354(Supplement C), 160–79 (2014)Google Scholar
  92. 92.
    Guzik, U., Hupert-Kocurek, K., Wojcieszyńska, D.: Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules 19(7), 8995 (2014)CrossRefGoogle Scholar
  93. 93.
    Mechrez, G., Krepker, M.A., Harel, Y., Lellouche, J.-P., Segal, E.: Biocatalytic carbon nanotube paper: a ‘one-pot’route for fabrication of enzyme-immobilized membranes for organophosphate bioremediation. J. Mater. Chem. B. 2(7), 915–922 (2014)CrossRefGoogle Scholar
  94. 94.
    Bilal, M., Asgher, M., Iqbal, H.M.N., Hu, H., Wang, W., Zhang, X.: Bio-catalytic performance and dye-based industrial pollutants degradation potential of agarose-immobilized MnP using a Packed Bed Reactor System. Int. J. Biol. Macromol. 102(Supplement C), 582–90 (2017)Google Scholar
  95. 95.
    Li, G., Nandgaonkar, A.G., Lu, K., Krause, W.E., Lucia, L.A., Wei, Q.: Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy. RSC Adv. 6(47), 41420–41427 (2016)CrossRefGoogle Scholar
  96. 96.
    Jacques, L., Thibaud, C., Cécile, R.: Encapsulation of biomolecules in silica gels. J. Phys.: Condens. Matter 13(33), R673 (2001)Google Scholar
  97. 97.
    Kim, M.I., Kim, J., Lee, J., Jia, H., Na, H.B., Youn, J.K., et al.: Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnol. Bioeng. 96(2), 210–218 (2007)CrossRefGoogle Scholar
  98. 98.
    Nguyen, L.N., Hai, F.I., Dosseto, A., Richardson, C., Price, W.E., Nghiem, L.D.: Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor. Bioresour. Tech. 210(Supplement C), 108–16 (2016)Google Scholar
  99. 99.
    Ali, M., Husain, Q., Alam, N., Ahmad, M.: Enhanced catalytic activity and stability of ginger peroxidase immobilized on amino-functionalized silica-coated titanium dioxide nanocomposite: a cost-effective tool for bioremediation. Water Air Soil Pollut. 228(1), 22 (2016)CrossRefGoogle Scholar
  100. 100.
    Dai, Y., Yao, J., Song, Y., Liu, X., Wang, S., Yuan, Y.: Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water. J. Hazard. Mater. 317(Supplement C), 485–93 (2016)Google Scholar
  101. 101.
    Othman, A., Gonzalez-Dominguez, E., Sanroman, A., Correa-Duarte, M., Moldes, D.: Immobilization of laccase on functionalized multiwalled carbon nanotube membranes and application for dye decolorization. RSC Advances. 6(115), 114690–114697 (2016)CrossRefGoogle Scholar
  102. 102.
    Suma, Y., Kang, C.S., Kim, H.S.: Noncovalent and covalent immobilization of oxygenase on single-walled carbon nanotube for enzymatic decomposition of aromatic hydrocarbon intermediates. Environ. Sci. Pollut. Res. 23(2), 1015–1024 (2016)CrossRefGoogle Scholar
  103. 103.
    Suma, Y., Lim, H., Kwean, O.S., Cho, S., Yang, J., Kim, Y., et al.: Enzymatic degradation of aromatic hydrocarbon intermediates using a recombinant dioxygenase immobilized onto surfactant-activated carbon nanotube. Biores. Technol. 210, 117–122 (2016)CrossRefGoogle Scholar
  104. 104.
    Kaur, A., Gupta, U.: A review on applications of nanoparticles for the preconcentration of environmental pollutants. J. Mater. Chem. 19(44), 8279–8289 (2009)CrossRefGoogle Scholar
  105. 105.
    Krajewska, B.: Urease immobilized on chitosan membrane. Inactivation by heavy metal ions. J. Chem. Technol. Biotechnol. 52(2), 157–162 (1991)CrossRefGoogle Scholar
  106. 106.
    Sheldon, R., van Pelt, S.: Enzyme immobilisation in biocatalysis: why, what and how. Cheml. Soc. Rev. (2013)Google Scholar
  107. 107.
    Asuri, P., Karajanagi, S.S., Sellitto, E., Kim, D.-Y., Kane, R.S., Dordick, J.S.: Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol. Bioeng. 95(5), 804–811 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Swe Jyan Teh
    • 1
  • Tong Ling Tan
    • 1
  • Chin Wei Lai
    • 1
  • Kian Mun Lee
    • 1
  1. 1.Nanotechnology and Catalysis Research Centre (NANOCAT)Institute of Graduate Studies (IGS), University of MalayaKuala LumpurMalaysia

Personalised recommendations