Carbon Nanotubes Synthesis

  • Rasel DasEmail author
  • Sayonthoni Das Tuhi
Part of the Carbon Nanostructures book series (CARBON)


Numerous interesting and useful physicochemical properties of carbon nanotubes (CNTs) have made them one of the most fascinating nanomaterials for decades. Although it was a fortuitous discovery at the beginning, many methods have been documented for its synthesis with arguments, criticisms, and appeals. Increasing applications of CNTs from tennis racket to space elevator has pressed its demands for industrial production and invention of novel methods for large-scale synthesis with desirable features. This chapter comprehensively describes major CNT synthetic schemes with highlighted features and growth mechanisms with reasonable illustrations in diagrams and tables, which made them understandable even to a non-professional reader. It also postulates latest developments in the field to understand the roles of carbon feedstock, catalysts, and temperature along with other minor parameters to tune the CNT synthesis procedures for yielding industrial grade CNTs with desired properties. To complement that, current kinetics and reaction engineering aspects are also discussed. This chapter would serve as a reference guide in the field to demonstrate novel synthetic methods and expand denovo CNT-based applications.

References and Future Readings

  1. 1.
    Das, R., Vecitis, C.D., Schulze, A., Cao, B., Ismail, A.F., Lu, X., Chen, J., Ramakrishna, S.: Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. (2017)Google Scholar
  2. 2.
    Das, R.: Nanohybrid Catalyst based on Carbon Nanotube: A Step-By-Step Guideline from Preparation to Demonstration. Springer (2017)Google Scholar
  3. 3.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  4. 4.
    Golnabi, H.: Carbon nanotube research developments in terms of published papers and patents, synthesis and production. Scientia Iranica 19, 2012–2022 (2012)CrossRefGoogle Scholar
  5. 5.
    Zhao, Y.-L., Stoddart, J.F.: Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42, 1161–1171 (2009)CrossRefGoogle Scholar
  6. 6.
    Amelinckx, S., Lucas, A., Lambin, P.: Electron diffraction and microscopy of nanotubes. Rep. Prog. Phys. 62, 1471 (1999)CrossRefGoogle Scholar
  7. 7.
    Nessim, G.D.: Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2, 1306–1323 (2010)CrossRefGoogle Scholar
  8. 8.
    Das, R., Shahnavaz, Z., Ali, M.E., Islam, M.M., Hamid, S.B.A.: Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale Res. Lett. 11, 510 (2016)Google Scholar
  9. 9.
    Mohammad, S.N.: Some possible rules governing the syntheses and characteristics of nanotubes, particularly carbon nanotubes. Carbon 71, 34–46 (2014)CrossRefGoogle Scholar
  10. 10.
    Le Bouar, Y., Thomas, O., Ponchet, A., Forest, S.: An Introduction to the Stability of Nanoparticles, Mechanics of Nano-Objects, pp. 213–240. Les Presses de l’École des Mines de Paris, Paris (2011)Google Scholar
  11. 11.
    Mohammad, S.N.: Systematic investigation of the growth mechanisms for conventional, doped and bamboo-shaped nanotubes. Carbon 75, 133–148 (2014)CrossRefGoogle Scholar
  12. 12.
    Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)CrossRefGoogle Scholar
  13. 13.
    Bethune, D.S., Klang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)CrossRefGoogle Scholar
  14. 14.
    Saito, Y., Okuda, M., Koyama, T.: Carbon nanocapsules and single-wall nanotubes formed by arc evaporation. Surf. Rev. Lett. 3, 863–867 (1996)CrossRefGoogle Scholar
  15. 15.
    Williams, K., Tachibana, M., Allen, J., Grigorian, L., Cheng, S., Fang, S., Sumanasekera, G., Loper, A., Williams, J., Eklund, P.: Single-wall carbon nanotubes from coal. Chem. Phys. Lett. 310, 31–37 (1999)CrossRefGoogle Scholar
  16. 16.
    Zhao, J., Bao, W., Liu, X.: Synthesis of SWNTs from charcoal by arc-discharging. J. Wuhan Univ. Technol. Mater Sci. Ed. 25, 194–196 (2010)CrossRefGoogle Scholar
  17. 17.
    Moothi, K., Iyuke, S.E., Meyyappan, M., Falcon, R.: Coal as a carbon source for carbon nanotube synthesis. Carbon 50, 2679–2690 (2012)CrossRefGoogle Scholar
  18. 18.
    Xu, K., Li, Y.F., Xu, C.M., Gao, J.S., Liu, H.W., Yang, H.T., Richard, P.: Controllable synthesis of single-, double- and triple-walled carbon nanotubes from asphalt. Chem. Eng. J. 225, 210–215 (2013)CrossRefGoogle Scholar
  19. 19.
    Xu, K., Li, Y.F., Yang, F., Yang, W., Zhang, L.Q., Xu, C.M., Kaneko, T., Hatakeyama, R.: Controllable synthesis of single- and double-walled carbon nanotubes from petroleum coke and their application to solar cells. Carbon 68, 511–519 (2014)CrossRefGoogle Scholar
  20. 20.
    Farhat, S., Lamy de La Chapelle, M., Loiseau, A., Scott, C.D., Lefrant, S., Journet, C., Bernier, P.: Diameter control of single-walled carbon nanotubes using argon–helium mixture gases. J. Chem. Phys. 115, 6752–6759 (2001)CrossRefGoogle Scholar
  21. 21.
    Shimotani, K., Anazawa, K., Watanabe, H., Shimizu, M.: New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres. Appl. Phys. Mater. Sci. Process. 73, 451–454 (2001)CrossRefGoogle Scholar
  22. 22.
    Kota, M., Padya, B., Ramana, G.V., Jain, P.K., Padmanabham, G.: Role of buffer gas pressure on the synthesis of carbon nanotubes by arc discharge method. AIP Conf. Proc. 1538, 200–204 (2013)CrossRefGoogle Scholar
  23. 23.
    Kim, H.J., Oh, E., Lee, J., Lee, K.H.: Synthesis of single-walled carbon nanotubes using hemoglobin-based iron catalyst. Carbon 50, 722–726 (2012)CrossRefGoogle Scholar
  24. 24.
    Maser, W.K., Benito, A.M., Martinez, M.T.: Production of carbon nanotubes: the light approach. Carbon 40, 1685–1695 (2002)CrossRefGoogle Scholar
  25. 25.
    Guo, T., Nikolaev, P., Rinzler, A.G., Tomanek, D., Colbert, D.T., Smalley, R.E.: Self-assembly of tubular fullerenes. J. Phys. Chem. 99, 10694–10697 (1995)CrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Gu, H., Iijima, S.: Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl. Phys. Lett. 73, 3827–3829 (1998)CrossRefGoogle Scholar
  27. 27.
    Kokai, F., Takahashi, K., Yudasaka, M., Yamada, R., Ichihashi, T., Iijima, S.: Growth dynamics of single-wall carbon nanotubes synthesized by CO2 laser vaporization. J. Phys. Chem. B 103, 4346–4351 (1999)CrossRefGoogle Scholar
  28. 28.
    Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L., Richter, E., Eklund, P.C.: Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80, 3779–3782 (1998)CrossRefGoogle Scholar
  29. 29.
    Braidy, N., El Khakani, M.A., Botton, G.A.: Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem. Phys. Lett. 354, 88–92 (2002)CrossRefGoogle Scholar
  30. 30.
    Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)CrossRefGoogle Scholar
  31. 31.
    Yudasaka, M., Ichihashi, T., Komatsu, T., Iijima, S.: Single-wall carbon nanotubes formed by a single laser-beam pulse. Chem. Phys. Lett. 299, 91–96 (1999)CrossRefGoogle Scholar
  32. 32.
    Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., Rodriguez-Macias, F.J., Boul, P.J., Lu, A.H., Heymann, D., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., Smalley, R.E.: Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. Mater. 67, 29–37 (1998)CrossRefGoogle Scholar
  33. 33.
    Ismail, I., Hashim, M., Yahya, N.: Magnetic characterization of web-like carbon nanotubes catalyzed by Fe2O3 via pulsed laser ablation deposition (PLAD) technique. Int. J. Nanosci. 10, 403–412 (2011)CrossRefGoogle Scholar
  34. 34.
    Yuge, R., Toyama, K., Ichihashi, T., Ohkawa, T., Aoki, Y., Manako, T.: Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation. Appl. Surf. Sci. 258, 6958–6962 (2012)CrossRefGoogle Scholar
  35. 35.
    Jedrzejewska, A., Bachmatiuk, A., Ibrahim, I., Srekova, H., Nganou, C., Schuchner, F., Borowiak-Palen, E., Gemming, T., Cuniberti, G., Buchner, B., Rummeli, M.H.: A systematic and comparative study of binary metal catalysts for carbon nanotube fabrication using CVD and laser evaporation. Fullerenes, Nanotubes, Carbon Nanostruct. 21, 273–285 (2013)CrossRefGoogle Scholar
  36. 36.
    Liu, Y., Xu, M.H., Zhu, X.Z., Xie, M.M., Su, Y.J., Hu, N.T., Yang, Z., Zhang, Y.F.: Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68, 399–405 (2014)CrossRefGoogle Scholar
  37. 37.
    Ionescu, M.I., Zhang, Y., Li, R.Y., Sun, X.L.: Selective growth, characterization, and field emission performance of single-walled and few-walled carbon nanotubes by plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 258, 1366–1372 (2011)CrossRefGoogle Scholar
  38. 38.
    Lee, J.H., Hong, B., Park, Y.S.: The electrical and structural properties of carbon nanotubes grown by microwave plasma-enhanced chemical vapor deposition method for organic thin film transistor. Thin Solid Films 546, 77–80 (2013)CrossRefGoogle Scholar
  39. 39.
    Bystrov, K., van de Sanden, M.C.M., Arnas, C., Marot, L., Mathys, D., Liu, F., Xu, L.K., Li, X.B., Shalpegin, A.V., De Temmerman, G.: Spontaneous synthesis of carbon nanowalls, nanotubes and nanotips using high flux density plasmas. Carbon 68, 695–707 (2014)CrossRefGoogle Scholar
  40. 40.
    Wang, B.B., Zheng, K., Shao, R.W.: Comparative study on catalyst-free formation and electron field emission of carbon nanotips and nanotubes grown by chemical vapor deposition. Appl. Surf. Sci. 273, 268–272 (2013)CrossRefGoogle Scholar
  41. 41.
    Kim, J.B., Kong, S.J., Lee, S.Y., Kim, J.H., Lee, H.R., Kim, C.D., Min, B.K.: Characteristics of nitrogen-doped carbon nanotubes synthesized by using PECVD and thermal CVD. J. Korean Phys. Soc. 60, 1124–1128 (2012)CrossRefGoogle Scholar
  42. 42.
    Ohashi, T., Kato, R., Ochiai, T., Tokune, T., Kawarada, H.: High quality single-walled carbon nanotube synthesis using remote plasma CVD. Diamond Relat. Mater. 24, 184–187 (2012)CrossRefGoogle Scholar
  43. 43.
    Wei, L., Bai, S.H., Peng, W.K., Yuan, Y., Si, R.M., Goh, K.L., Jiang, R.R., Chen, Y.: Narrow-chirality distributed single-walled carbon nanotube synthesis by remote plasma enhanced ethanol deposition on cobalt incorporated MCM-41 catalyst. Carbon 66, 134–143 (2014)CrossRefGoogle Scholar
  44. 44.
    Ramakrishnan, S., Jelmy, E.J., Dhakshnamoorthy, M., Rangarajan, M., Kothurkar, N.: Synthesis of Carbon Nanotubes from Ethanol Using RF-CCVD and Fe–Mo Catalyst. Synth. React. Inorg. Met.-Org., Nano-Met. Chem. 44, 873–876 (2014)CrossRefGoogle Scholar
  45. 45.
    Wang, H.Y., Moore, J.J.: Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition. Carbon 50, 1235–1242 (2012)CrossRefGoogle Scholar
  46. 46.
    Lee, D.H., Lee, W.J., Kim, S.O.: Vertical single-walled carbon nanotube arrays via block copolymer lithography. Chem. Mater. 21, 1368–1374 (2009)CrossRefGoogle Scholar
  47. 47.
    Shahzad, M.I., Giorcelli, M., Perrone, D., Virga, A., Shahzad, N., Jagdale, P., Cocuzza, M., Tagliaferro, A.: Growth of vertically aligned multiwall carbon nanotubes columns. J. Phys. Conf. Ser. 439 (2013)Google Scholar
  48. 48.
    Youn, S.K., Frouzakis, C.E., Gopi, B.P., Robertson, J., Teo, K.B.K., Park, H.G.: Temperature gradient chemical vapor deposition of vertically aligned carbon nanotubes. Carbon 54, 343–352 (2013)CrossRefGoogle Scholar
  49. 49.
    Asli, N.A., Shamsudin, M.S., Falina, A.N., Azmina, M.S., Suriani, A.B., Rusop, M., Abdullah, S.: Field electron emission properties of vertically aligned carbon nanotubes deposited on a nanostructured porous silicon template: the hidden role of the hydrocarbon/catalyst ratio. Microelectron. Eng. 108, 86–92 (2013)CrossRefGoogle Scholar
  50. 50.
    Dittmer, S., Nerushev, O.A., Campbell, E.E.B.: Low ambient temperature CVD growth of carbon nanotubes. Appl. Phys. Mater. 84, 243–246 (2006)CrossRefGoogle Scholar
  51. 51.
    Marangoni, R., Serp, P., Feurer, R., Kihn, Y., Kalck, P., Vahlas, C.: Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalysts and ethylene. Carbon 39, 443–449 (2001)CrossRefGoogle Scholar
  52. 52.
    Teng, I.J., Hsu, H.L., Jian, S.R., Wang, L.C., Chen, K.L., Kuo, C.T., Pan, F.M., Wang, W.H., Juang, J.Y.: Temperature-dependent electrical and photo-sensing properties of horizontally-oriented carbon nanotube networks synthesized by sandwich-growth microwave plasma chemical vapor deposition. Thin Solid Films 529, 190–194 (2013)CrossRefGoogle Scholar
  53. 53.
    Breza, J., Pastorková, K., Kadlečíková, M., Jesenák, K., Čaplovičová, M., Kolmačka, M., Lazišťan, F.: Synthesis of nanocomposites based on nanotubes and silicates. Appl. Surf. Sci. 258, 2540–2543 (2012)CrossRefGoogle Scholar
  54. 54.
    Somanathan, T., Dijon, J., Fournier, A., Okuno, H.: Effective supergrowth of vertical aligned carbon nanotubes at low temperature and pressure. J. Nanosci. Nanotechnol. 14, 2520–2526 (2014)CrossRefGoogle Scholar
  55. 55.
    Zhang, Y.L., Hou, P.X., Liu, C., Cheng, H.M.: De-bundling of single-wall carbon nanotubes induced by an electric field during arc discharge synthesis. Carbon 74, 370–373 (2014)CrossRefGoogle Scholar
  56. 56.
    Byon, H.R., Lim, H., Song, H.J., Choi, H.C.: A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bull. Korean Chem. Soc. 28, 2056–2060 (2007)CrossRefGoogle Scholar
  57. 57.
    Yu, B., Liu, C., Hou, P.X., Tian, Y., Li, S., Liu, B., Li, F., Kauppinen, E.I., Cheng, H.M.: Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 133, 5232–5235 (2011)CrossRefGoogle Scholar
  58. 58.
    Paukner, C., Koziol, K.K.K.: Ultra-pure single wall carbon nanotube fibres continuously spun without promoter. Sci. Rep. 4 (2014)Google Scholar
  59. 59.
    Castro, C., Pinault, M., Porterat, D., Reynaud, C., Mayne-L’Hermite, M.: The role of hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin and densely packed vertically aligned carbon nanotubes. Carbon 61, 585–594 (2013)CrossRefGoogle Scholar
  60. 60.
    Kucukayan, G., Ovali, R., Ilday, S., Baykal, B., Yurdakul, H., Turan, S., Gulseren, O., Bengu, E.: An experimental and theoretical examination of the effect of sulfur on the pyrolytically grown carbon nanotubes from sucrose-based solid state precursors. Carbon 49, 508–517 (2011)CrossRefGoogle Scholar
  61. 61.
    Buang, N.A., Ismail, F., Othman, M.Z.: Synthesis of carbon nanotube heterojunctions from the decomposition of ethanol. Fullerenes, Nanotubes, Carbon Nanostruct. 22, 307–315 (2014)CrossRefGoogle Scholar
  62. 62.
    Yokoyama, D., Iwasaki, T., Ishimaru, K., Sato, S., Nihei, M., Awano, Y., Kawarada, H.: Low-temperature synthesis of multiwalled carbon nanotubes by graphite antenna CVD in a hydrogen-free atmosphere. Carbon 48, 825–831 (2010)CrossRefGoogle Scholar
  63. 63.
    Yu, D.S., Xue, Y.H., Dai, L.M.: Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3, 2863–2870 (2012)CrossRefGoogle Scholar
  64. 64.
    Xu, Y., Dervishi, E., Biris, A.R., Biris, A.S.: Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Mater. Lett. 65, 1878–1881 (2011)CrossRefGoogle Scholar
  65. 65.
    Li, Y.C., Ruan, W.Z., Wang, Z.Y.: Localized synthesis of carbon nanotube films on suspended microstructures by laser-assisted chemical vapor deposition. IEEE Trans. Nanotechnol. 12, 352–360 (2013)CrossRefGoogle Scholar
  66. 66.
    Morales, N.J., Goyanes, S., Chiliotte, C., Bekeris, V., Candal, R.J., Rubiolo, G.H.: One-step chemical vapor deposition synthesis of magnetic CNT–hercynite (FeAl2O4) hybrids with good aqueous colloidal stability. Carbon 61, 515–524 (2013)CrossRefGoogle Scholar
  67. 67.
    Toubestani, D.H., Ghoranneviss, M., Mahmoodi, A., Zareh, M.R.: CVD growth of carbon nanotubes and nanofibers: big length and constant diameter. Macromol. Symp. 287, 143–147 (2010)CrossRefGoogle Scholar
  68. 68.
    Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., Kohno, M.: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 360, 229–234 (2002)CrossRefGoogle Scholar
  69. 69.
    Pooperasupong, S., Caussat, B., Serp, P., Damronglerd, S.: Synthesis of multi-walled carbon nanotubes by fluidized-bed chemical vapor deposition over Co/Al2O3. J. Chem. Eng. Jpn. 47, 28–39 (2014)CrossRefGoogle Scholar
  70. 70.
    Lolli, G., Zhang, L., Balzano, L., Sakulchaicharoen, N., Tan, Y., Resasco, D.E.: Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 110, 2108–2115 (2006)CrossRefGoogle Scholar
  71. 71.
    Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A., Smalley, R.E.: Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A 19, 1800–1805 (2001)CrossRefGoogle Scholar
  72. 72.
    Lyu, S.C., Kim, H.W., Kim, S.J., Park, J.W., Lee, C.J.: Synthesis and crystallinity of carbon nanotubes produced by a vapor-phase growth method. Appl. Phys. Mater. Sci. Process. 79, 697–700 (2004)CrossRefGoogle Scholar
  73. 73.
    Jorio, A., Kauppinen, E., Hassanien, A.: Carbon-nanotube metrology. In: Carbon Nanotubes. Springer, pp. 63–100 (2008)Google Scholar
  74. 74.
    Holt, J.K., Noy, A., Huser, T., Eaglesham, D., Bakajin, O.: Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Lett. 4, 2245–2250 (2004)CrossRefGoogle Scholar
  75. 75.
    Amama, P.B., Pint, C.L., McJilton, L., Kim, S.M., Stach, E.A., Murray, P.T., Hauge, R.H., Maruyama, B.: Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9, 44–49 (2008)CrossRefGoogle Scholar
  76. 76.
    Kang, Z.H., Wang, E.B., Mao, B.D., Su, Z.M., Chen, L., Xu, L.: Obtaining carbon nanotubes from grass. Nanotechnology 16, 1192–1195 (2005)CrossRefGoogle Scholar
  77. 77.
    Ye, X.D., Yang, Q., Zheng, Y.F., Mo, W.M., Hu, J.G., Huang, W.Z.: Biotemplate synthesis of carbon nanostructures using bamboo as both the template and the carbon source. Mater. Res. Bull. 51, 366–371 (2014)CrossRefGoogle Scholar
  78. 78.
    Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., Waite, R.J.: Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26, 51–62 (1972)CrossRefGoogle Scholar
  79. 79.
    Shah, R., Zhang, X.F., An, X., Kar, S., Talapatra, S.: Ferrocene derived carbon nanotubes and their application as electrochemical double layer capacitor electrodes. J. Nanosci. Nanotechnol. 10, 4043–4048 (2010)CrossRefGoogle Scholar
  80. 80.
    He, C.N., Chen, L., Shi, C.S., Zhang, C.G., Liu, E.Z., Li, J.J., Zhao, N.Q., Wang, X.M., Makino, A., Inoue, A.: Direct synthesis of amorphous carbon nanotubes on Fe76Si9B10P5 glassy alloy particles. J. Alloys Compd. 581, 282–288 (2013)CrossRefGoogle Scholar
  81. 81.
    Zhong, G., Xie, R., Yang, J., Robertson, J.: Single-step CVD growth of high-density carbon nanotube forests on metallic Ti coatings through catalyst engineering. Carbon 67, 680–687 (2014)CrossRefGoogle Scholar
  82. 82.
    Yeoh, W.M., Lee, K.Y., Chai, S.P., Lee, K.T., Mohamed, A.R.: Effective synthesis of carbon nanotubes via catalytic decomposition of methane: Influence of calcination temperature on metal-support interaction of Co-Mo/MgO catalyst. J. Phys. Chem. Solids 74, 1553–1559 (2013)CrossRefGoogle Scholar
  83. 83.
    He, M., Jiang, H., Liu, B., Fedotov, P.V., Chernov, A.I., Obraztsova, E.D., Cavalca, F., Wagner, J.B., Hansen, T.W., Anoshkin, I.V., Obraztsova, E.A., Belkin, A.V., Sairanen, E., Nasibulin, A.G., Lehtonen, J., Kauppinen, E.I.: Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 3, 1460 (2013)CrossRefGoogle Scholar
  84. 84.
    Lin, J.-H., Chen, C.-S., Ma, H.-L., Hsu, C.-Y., Chen, H.-W.: Synthesis of MWCNTs on CuSO4/Al2O3 using chemical vapor deposition from methane. Carbon 45, 223–225 (2007)CrossRefGoogle Scholar
  85. 85.
    Lin, Y.C., Lin, J.H.: Purity-controllable growth of bamboo-like multi-walled carbon nanotubes over copper-based catalysts. Catal. Commun. 34, 41–44 (2013)CrossRefGoogle Scholar
  86. 86.
    Baliyan, A., Nakajima, Y., Fukuda, T., Uchida, T., Hanajiri, T., Maekawa, T.: Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles. J. Am. Chem. Soc. 136, 1047–1053 (2014)CrossRefGoogle Scholar
  87. 87.
    Pastorkova, K., Jesenak, K., Kadlecikova, M., Breza, J., Kolmacka, M., Caplovicova, M., Lazist’an, F., Michalka, M.: The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite). Appl. Surf. Sci. 258, 2661–2666 (2012)CrossRefGoogle Scholar
  88. 88.
    Kim, H.J., Seo, S.W., Lee, J., Jung, G.Y., Lee, K.H.: The synthesis of single-walled carbon nanotubes with narrow diameter distribution using polymerized hemoglobin. Carbon 69, 588–594 (2014)CrossRefGoogle Scholar
  89. 89.
    Lee, J.H., Lee, S.H., Kim, D., Park, Y.S.: The structural and surface properties of carbon nanotube synthesized by microwave plasma chemical vapor deposition method for superhydrophobic coating. Thin Solid Films 546, 94–97 (2013)CrossRefGoogle Scholar
  90. 90.
    Sun, T.T., Fan, G.L., Li, F.: Dispersion-enhanced supported Pd catalysts for efficient growth of carbon nanotubes through chemical vapor deposition. Ind. Eng. Chem. Res. 52, 5538–5547 (2013)CrossRefGoogle Scholar
  91. 91.
    Li, Y.F., Wang, H.F., Wang, G., Gao, J.S.: Synthesis of single-walled carbon nanotubes from heavy oil residue. Chem. Eng. J. 211, 255–259 (2012)CrossRefGoogle Scholar
  92. 92.
    Kaushik, V., Sharma, H., Girdhar, P., Shukla, A.K., Vankar, V.D.: Structural modification and enhanced electron emission from multiwalled carbon nanotubes grown on Ag/Fe catalysts coated Si-substrates. Mater. Chem. Phys. 130, 986–992 (2011)CrossRefGoogle Scholar
  93. 93.
    Ohashi, T., Ochiai, T., Tokune, T., Kawarada, H.: Increasing the length of a single-wall carbon nanotube forest by adding titanium to a catalytic substrate. Carbon 57, 79–87 (2013)CrossRefGoogle Scholar
  94. 94.
    Balamurugan, J., Thangamuthu, R., Pandurangan, A.: Growth of carbon nanotubes over transition metal loaded on Co-SBA-15 and its application for high performance dye-sensitized solar cells. J. Mater. Chem. A 1, 5070–5080 (2013)CrossRefGoogle Scholar
  95. 95.
    Jung, Y., Song, J., Huh, W., Cho, D., Jeong, Y.: Controlling the crystalline quality of carbon nanotubes with processing parameters from chemical vapor deposition synthesis. Chem. Eng. J. 228, 1050–1056 (2013)CrossRefGoogle Scholar
  96. 96.
    Li, W.L., Yuan, J.K., Lin, Y.Q., Yao, S.H., Ren, Z.Y., Wang, H., Wang, M.Q., Bai, J.B.: The controlled formation of hybrid structures of multi-walled carbon nanotubes on SiC plate-like particles and their synergetic effect as a filler in poly(vinylidene fluoride) based composites. Carbon 51, 355–364 (2013)CrossRefGoogle Scholar
  97. 97.
    Sekiguchi, K., Furuichi, K., Shiratori, Y., Noda, S.: One second growth of carbon nanotube arrays on a glass substrate by pulsed-current heating. Carbon 50, 2110–2118 (2012)CrossRefGoogle Scholar
  98. 98.
    Liu, Y., Li, H.B., Nie, C.Y., Pan, L.K., Sun, Z.: Carbon nanotube and carbon nanofiber composite films grown on different graphite substrate for capacitive deionization. Desalin. Water Treat. 51, 3988–3994 (2013)CrossRefGoogle Scholar
  99. 99.
    Han, S., Liu, X., Zhou, C.: Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 127, 5294–5295 (2005)CrossRefGoogle Scholar
  100. 100.
    Maret, M., Hostache, K., Schouler, M.C., Marcus, B., Roussel-Dherbey, F., Albrecht, M., Gadelle, P.: Oriented growth of single-walled carbon nanotubes on a MgO(001) surface. Carbon 45, 180–187 (2007)CrossRefGoogle Scholar
  101. 101.
    Su, C.C., Chang, S.H.: Comparison of the efficiency of various substrates in growing vertically aligned carbon nanotube carpets. Carbon 49, 5271–5282 (2011)CrossRefGoogle Scholar
  102. 102.
    He, D.L., Li, H., Li, W.L., Haghi-Ashtiani, P., Lejay, P., Bai, J.B.: Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles. Carbon 49, 2273–2286 (2011)CrossRefGoogle Scholar
  103. 103.
    Hiramatsu, M., Hori, M.: Aligned growth of single-walled and double-walled carbon nanotube films by control of catalyst preparation (2011)Google Scholar
  104. 104.
    Kumar, S., Srivastava, S., Vijay, Y.: Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes. Int. J. Hydrogen Energy 37, 3914–3921 (2012)CrossRefGoogle Scholar
  105. 105.
    Liu, T.Y., Zhang, L.L., Yu, W.J., Li, S.S., Hou, P.X., Cong, H.T., Liu, C., Cheng, H.M.: Growth of double-walled carbon nanotubes from silicon oxide nanoparticles. Carbon 56, 167–172 (2013)CrossRefGoogle Scholar
  106. 106.
    Kumar, M., Ando, Y.: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)CrossRefGoogle Scholar
  107. 107.
    Taleshi, F.: A new strategy for increasing the yield of carbon nanotubes by the CVD method. Fullerenes, Nanotubes, Carbon Nanostruct. 22, 921–927 (2014)CrossRefGoogle Scholar
  108. 108.
    Taleshi, F., Hosseini, A.A.: Effect of sudden initiation and temperature on growth and diameter of carbon nanotubes synthesized by CVD method. Indian J. Phys. 87, 425–430 (2013)CrossRefGoogle Scholar
  109. 109.
    Aksak, M., Kir, S., Selamet, Y.: Effect of the growth temperature on carbon nanotubes grown by thermal chemical vapor deposition method. J. Optoelectron. Adv. Mater. Symp. 1, 281–284 (2009)Google Scholar
  110. 110.
    Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Hasko, D.G., Pirio, G., Legagneux, P., Wyczisk, F., Pribat, D.: Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79, 1534–1536 (2001)CrossRefGoogle Scholar
  111. 111.
    Sengupta, J., Jacob, C.: Growth temperature dependence of partially Fe filled MWCNT using chemical vapor deposition. J. Cryst. Growth 311, 4692–4697 (2009)CrossRefGoogle Scholar
  112. 112.
    Murakami, Y., Miyauchi, Y., Chiashi, S., Maruyama, S.: Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem. Phys. Lett. 377, 49–54 (2003)CrossRefGoogle Scholar
  113. 113.
    Xiang, R., Einarsson, E., Okawa, J., Miyauchi, Y., Maruyama, S.: Acetylene-accelerated alcohol catalytic chemical vapor deposition growth of vertically aligned single-walled carbon nanotubes. J. Phys. Chem. C 113, 7511–7515 (2009)CrossRefGoogle Scholar
  114. 114.
    Inoue, T., Hasegawa, D., Badar, S., Aikawa, S., Chiashi, S., Maruyama, S.: Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates. J. Phys. Chem. C 117, 11804–11810 (2013)CrossRefGoogle Scholar
  115. 115.
    Zhang, G., Mann, D., Zhang, L., Javey, A., Li, Y., Yenilmez, E., Wang, Q., McVittie, J.P., Nishi, Y., Gibbons, J., Dai, H.: Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. U.S.A. 102, 16141–16145 (2005)CrossRefGoogle Scholar
  116. 116.
    Xu, T., Miao, J.: Investigation of influence of synthesis parameters on length and purity of the CNTs grown by thermal chemical vapor deposition. In: 2010 3rd International Nanoelectronics Conference (INEC), IEEE, pp. 83–84 (2010)Google Scholar
  117. 117.
    Toussi, S.M., Fakhru’l-Razi, A., Chuah, A.L., Suraya, A.R.: Optimization of synthesis condition for carbon nanotubes by catalytic chemical vapor deposition (CCVD). In: Conference on Advanced Materials and Nanotechnology (Caman 2009), vol. 17 (2011)Google Scholar
  118. 118.
    Hsu, W.K., Hare, J.P., Terrones, M., Kroto, H.W., Walton, D.R.M., Harris, P.J.F.: Condensed-phase nanotubes. Nature 377, 687 (1995)CrossRefGoogle Scholar
  119. 119.
    Schwandt, C., Dimitrov, A.T., Fray, D.J.: The preparation of nano-structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes. J. Electroanal. Chem. 647, 150–158 (2010)CrossRefGoogle Scholar
  120. 120.
    Hsu, W., Hare, J., Terrones, M., Kroto, H., Walton, D., Harris, P.: Condensed-phase nanotubes. Nature 377, 687 (1995)CrossRefGoogle Scholar
  121. 121.
    Bai, J.B., Hamon, A.L., Marraud, A., Jouffrey, B., Zymla, V.: Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method. Chem. Phys. Lett. 365, 184–188 (2002)CrossRefGoogle Scholar
  122. 122.
    Kinloch, I.A., Chen, G.Z., Howes, J., Boothroyd, C., Singh, C., Fray, D.J., Windle, A.H.: Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl. Carbon 41, 1127–1141 (2003)CrossRefGoogle Scholar
  123. 123.
    Novoselova, I.A., Oliinyk, N.F., Volkov, S.V., Konchits, A.A., Yanchuk, I.B., Yefanov, V.S., Kolesnik, S.P., Karpets, M.V.: Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization. Phys. E 40, 2231–2237 (2008)CrossRefGoogle Scholar
  124. 124.
    Dimitrov, T.A., Ademi, A., Grozdanov, A., Paunović, P.: Production and characterization of MWCNTs produced by non-stationary current regimes in molten LiCl. Appl. Mech. Mater. 328, 772–777 (2013)CrossRefGoogle Scholar
  125. 125.
    Gogotsi, Y., Libera, J.A., Yoshimura, M.: Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15, 2591–2594 (2000)CrossRefGoogle Scholar
  126. 126.
    Calderon Moreno, J.M., Yoshimura, M.: Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. J. Am. Chem. Soc. 123, 741–742 (2001)CrossRefGoogle Scholar
  127. 127.
    Wang, W.Z., Huang, J.Y., Wang, D.Z., Ren, Z.F.: Low-temperature hydrothermal synthesis of multiwall carbon nanotubes. Carbon 43, 1328–1331 (2005)CrossRefGoogle Scholar
  128. 128.
    Vohs, J.K., Brege, J.J., Raymond, J.E., Brown, A.E., Williams, G.L., Fahlman, B.D.: Low-temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride. J. Am. Chem. Soc. 126, 9936–9937 (2004)CrossRefGoogle Scholar
  129. 129.
    Manafi, S., Nadali, H., Irani, H.R.: Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method. Mater. Lett. 62, 4175–4176 (2008)CrossRefGoogle Scholar
  130. 130.
    Manafi, S., Rahaei, M.B., Elli, Y., Joughehdoust, S.: High-yield synthesis of multi-walled carbon nanotube by hydrothermal method. Can. J. Chem. Eng. 88, 283–286 (2010)Google Scholar
  131. 131.
    Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y., Itami, K.: Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013)CrossRefGoogle Scholar
  132. 132.
    Omachi, H., Matsuura, S., Segawa, Y., Itami, K.: A modular and size-selective synthesis of [n]cycloparaphenylenes: a step toward the selective synthesis of [n, n] single-walled carbon nanotubes. Angew. Chem. Int. Ed. Engl. 49, 10202–10205 (2010)CrossRefGoogle Scholar
  133. 133.
    Yagi, A., Segawa, Y., Itami, K.: Synthesis and properties of [9] cyclo-1, 4-naphthylene: a π-extended carbon nanoring. J. Am. Chem. Soc. 134, 2962–2965 (2012)CrossRefGoogle Scholar
  134. 134.
    Omachi, H., Segawa, Y., Itami, K.: Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378–1389 (2012)CrossRefGoogle Scholar
  135. 135.
    Omachi, H., Segawa, Y., Itami, K.: Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org. Lett. 13, 2480–2483 (2011)CrossRefGoogle Scholar
  136. 136.
    Li, H.B., Page, A.J., Irle, S., Morokuma, K.: Single-walled carbon nanotube growth from chiral carbon nanorings: prediction of chirality and diameter influence on growth rates. J. Am. Chem. Soc. 134, 15887–15896 (2012)CrossRefGoogle Scholar
  137. 137.
    Fort, E.H., Scott, L.T.: Gas-phase Diels-Alder cycloaddition of benzyne to an aromatic hydrocarbon bay region: groundwork for the selective solvent-free growth of armchair carbon nanotubes. Tetrahedron Lett. 52, 2051–2053 (2011)CrossRefGoogle Scholar
  138. 138.
    Berson, J.A.: Discoveries missed, discoveries made: creativity, influence, and fame in chemistry. Tetrahedron 48, 3–17 (1992)CrossRefGoogle Scholar
  139. 139.
    Fort, E.H., Scott, L.T.: Carbon nanotubes from short hydrocarbon templates. Energy analysis of the Diels-Alder cycloaddition/rearomatization growth strategy. J. Mater. Chem. 21, 1373–1381 (2011)CrossRefGoogle Scholar
  140. 140.
    Smalley, R.E., Li, Y., Moore, V.C., Price, B.K., Colorado Jr., R., Schmidt, H.K., Hauge, R.H., Barron, A.R., Tour, J.M.: Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. J. Am. Chem. Soc. 128, 15824–15829 (2006)CrossRefGoogle Scholar
  141. 141.
    Scott, C.D., Arepalli, S., Nikolaev, P., Smalley, R.E.: Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. Mater. 72, 573–580 (2001)CrossRefGoogle Scholar
  142. 142.
    Xia, J., Golder, M.R., Foster, M.E., Wong, B.M., Jasti, R.: Synthesis, characterization, and computational studies of cycloparaphenylene dimers. J. Am. Chem. Soc. 134, 19709–19715 (2012)CrossRefGoogle Scholar
  143. 143.
    Jasti, R., Bertozzi, C.R.: Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem. Phys. Lett. 494, 1–7 (2010)CrossRefGoogle Scholar
  144. 144.
    Price, C.C.: The alkylation of aromatic compounds by the Friedel-Crafts method. Org. React. (1946)Google Scholar
  145. 145.
    Arndtsen, B.A., Bergman, R.G., Mobley, T.A., Peterson, T.H.: Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res. 28, 154–162 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical DepartmentLeibniz Institute of Surface EngineeringLeipzigGermany
  2. 2.Department of MicrobiologyUniversity of ChittagongChittagongBangladesh

Personalised recommendations