Water Pollutants Classification and Its Effects on Environment

  • M. M. GhangrekarEmail author
  • Pritha Chatterjee
Part of the Carbon Nanostructures book series (CARBON)


With increasing urbanization and advancement of science, researches in nanotechnology and nanomaterial development are experiencing unprecedented expansion. Nanoparticle pollution is considered to be the most difficult pollution being managed and controlled. This chapter briefly describes the different types of water pollutants with a more detailed discussion on nanoparticle pollution. The chapter also gives an effort to visualize the challenges associated with dealing with nanoparticle waste.

References and Future Readings

  1. 1.
    CPCB: Performance evaluation of sewage treatment plants under NRCD. Central Pollution Control Board (2013)Google Scholar
  2. 2.
    Colt, J.: Water quality requirements for reuse systems. Aquacult. Eng. 34, 143–156 (2006)CrossRefGoogle Scholar
  3. 3.
    Semrany, S., Favier, L., Djelal, H., Taha, S., Amrane, A.: Bioaugmentation: possible solution in the treatment of bio-refractory organic compounds (Bio-ROCs). Biochem. Eng. J. 69, 75–86 (2012)CrossRefGoogle Scholar
  4. 4.
    Barrera-Díaz, C., Linares-Hernández, I., Roa-Morales, G., Bilyeu, B., Balderas-Hernández, P.: Removal of biorefractory compounds in industrial wastewater by chemical and electrochemical pretreatments. Ind. Eng. Chem. Res. 48(3), 1253–1258 (2009)Google Scholar
  5. 5.
    Haritash, A.K., Kaushik, C.P.: Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. 169(1–3), 1–15 (2009)Google Scholar
  6. 6.
    Brenniman, G.R.: Water-borne diseases. In: Alexander (ed.) Environmental Geology. Encyclopedia of Earth Science. Springer, Dordrecht (2009)Google Scholar
  7. 7.
    Knobeloch, L., Salna, B., Hogan, A., Postle, J., Anderson, H.: Blue babies and nitrate-contaminated well water. Environ. Health Perspect. 108(7), 675–678 (2000)CrossRefGoogle Scholar
  8. 8.
    McParland, H., Warnakulasuriya, S.: Oral lichenoid contact lesions to mercury and dental amalgam—a review. J. Biomed. Biotechnol. 2012, 589569 (2012). Scholar
  9. 9.
    Nowack, B., Bucheli, T.D.: Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150(1), 5–22 (2007)CrossRefGoogle Scholar
  10. 10.
    O’Brien, N., Cummins, E.: Recent developments in nanotechnology and risk assessment strategies for addressing public and environmental health concerns. Hum. Ecol. Risk Assess. 14(3), 568–592 (2008)CrossRefGoogle Scholar
  11. 11.
    O’Brien, N.J., Cummins, E.J.: A risk assessment framework for assessing metallic nanomaterials of environmental concern: aquatic exposure and behavior. Risk Anal. 31(5), 706–726 (2011)CrossRefGoogle Scholar
  12. 12.
    Gao, Y., Yang, T., Jin, J.: Nanoparticle pollution and associated increasing potential risks on environment and human health: a case study of China. Environ. Sci. Pollut. Res. 22(23), 19297–19306 (2015)CrossRefGoogle Scholar
  13. 13.
    Sweet, L., Strohm, B.: Nanotechnology—life-cycle risk management. Hum. Ecol. Risk Assess. 12(3), 528–551 (2006)CrossRefGoogle Scholar
  14. 14.
    Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., et al.: Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27(9), 1825–1851 (2008)CrossRefGoogle Scholar
  15. 15.
    Das, R., Shahnavaz, Z., Ali, M.E., Islam, M.M., Hamid, S.B.A.: Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale Res. Lett. 11(1), 510 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhang, X., Guo, W., Ngo, H.H., Wen, H., Li, N., Wu, W.: Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. J. Environ. Manage. 172, 193–200 (2016)CrossRefGoogle Scholar
  17. 17.
    Asfaram, A., Ghaedi, M., Hajati, S., Rezaeinejad, M., Goudarzi, A., Purkait, M.K.: Rapid removal of Auramine-O and Methylene blue by ZnS: Cu nanoparticles loaded on activated carbon: a response surface methodology approach. J. Taiwan Inst. Chem. Eng. 53, 80–91 (2015)CrossRefGoogle Scholar
  18. 18.
    Abdelbassit, M.S.A., Alhooshani, K.R., Saleh, T.A.: Silica nanoparticles loaded on activated carbon for simultaneous removal of dichloromethane, trichloromethane, and carbon tetrachloride. Adv. Powder Technol. 27(4), 1719–1729 (2016)CrossRefGoogle Scholar
  19. 19.
    Chowdhury, Z.Z., Hamid, S.B.A., Das, R., Hasan, M.R., Zain, S.M., Khalid, K., et al.: Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 8(4), 6523–6555 (2013)CrossRefGoogle Scholar
  20. 20.
    Wang, W., Xiao, K., He, T., Zhu, L.: Synthesis and characterization of Ag nanoparticles decorated mesoporous sintered activated carbon with antibacterial and adsorptive properties. J. Alloy. Compd. 647, 1007–1012 (2015)CrossRefGoogle Scholar
  21. 21.
    Das, R., Hamid, S.B.A., Ali, M., Annuar, M., Samsudin, E.M.B., Bagheri, S.: Covalent functionalization schemes for tailoring solubility of multi-walled carbon nanotubes in water and acetone solvents. Sci. Adv. Mater. 7(12), 2726–2737 (2015)CrossRefGoogle Scholar
  22. 22.
    Ali, M., Das, R., Maamor, A., Hamid, S.B.A.: Multifunctional carbon nanotubes (CNTs): a new dimension in environmental remediation. Adv. Mater. Res. 832, 328–332 (2014)CrossRefGoogle Scholar
  23. 23.
    Li, Y.H., Wang, S., Cao, A., Zhao, D., Zhang, X., Xu, C., et al.: Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem. Phys. Lett. 350(5–6), 412–416 (2001)CrossRefGoogle Scholar
  24. 24.
    Liu, G., Wang, J., Zhu, Y., Zhang, X.: Application of multiwalled carbon nanotubes as a solid-phase extraction sorbent for chlorobenzenes. Anal. Lett. 37(14), 3085–3104 (2004)CrossRefGoogle Scholar
  25. 25.
    Kondratyuk, P., Yates Jr., J.T.: Desorption kinetic detection of different adsorption sites on opened carbon single walled nanotubes: the adsorption of n-nonane and CCl4. Chem. Phys. Lett. 410(4–6), 324–329 (2005)CrossRefGoogle Scholar
  26. 26.
    Das, R.: Nanohybrid catalyst based on carbon nanotube: a step-by-step guideline from preparation to demonstration. Springer (2017)Google Scholar
  27. 27.
    Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014)CrossRefGoogle Scholar
  28. 28.
    Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)CrossRefGoogle Scholar
  29. 29.
    Das, R., Hamid, S.B.A., Annuar, M.S.M.: Highly efficient and stable novel nanobiohybrid catalyst to avert 3, 4-dihydroxybenzoic acid pollutant in water. Sci. Rep. 6, 33572 (2016)CrossRefGoogle Scholar
  30. 30.
    Das, R., Abd Hamid, S.B., Ali, M.E.: Nanobiohybrid: a favorite candidate for future water purification technology. Adv. Mater. Res.: Trans Tech Publ, 193–197Google Scholar
  31. 31.
    Das, R., Ali, M.E., Hamid, S.B.A., Annuar, M., Ramakrishna, S.: Common wet chemical agents for purifying multiwalled carbon nanotubes. J. Nanomater. 2014, 237 (2014)Google Scholar
  32. 32.
    Das, R.: Carbon nanotube purification. In: Nanohybrid Catalyst based on Carbon Nanotube, pp. 55–73. Springer (2017)Google Scholar
  33. 33.
    Xu, G.-R., Xu, J.-M., Su, H.-C., Liu, X.-Y., Zhao, H.-L., Feng, H.-J., et al.: Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: latest developments and future directions. Desalination (2017)Google Scholar
  34. 34.
    Bahena, J.L.R., Cabrera, A.R., Valdivieso, A.L., Urbina, R.H.: Fluoride adsorption onto α-Al2O3 and its effect on the zeta potential at the alumina-aqueous electrolyte interface. Sep. Sci. Technol. 37(8), 1973–1987 (2002)CrossRefGoogle Scholar
  35. 35.
    Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.-C., Kim, K.S.: Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano. 4(7), 3979–3986 (2010)CrossRefGoogle Scholar
  36. 36.
    WooáLee, J., BináKim, S.: Enhanced Cr (VI) removal using iron nanoparticle decorated graphene. Nanoscale 3(9), 3583–3585 (2011)CrossRefGoogle Scholar
  37. 37.
    Huang, Z.-H., Zheng, X., Lv, W., Wang, M., Yang, Q.-H., Kang, F.: Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27(12), 7558–7562 (2011)CrossRefGoogle Scholar
  38. 38.
    Das, R.: Advanced membrane materials for desalination: carbon nanotube and graphene. In: Inamuddin, Mohammad, A., Asiri, M.A. (eds.) Inorganic Pollutants in Wastewater Methods of Analysis, Removal and Treatment, pp. 1–10. Materials Research Forum LLC 2017, Millersville, PAGoogle Scholar
  39. 39.
    Ajith, N., Dalvi, A.A., Swain, K.K., Devi, P.R., Kalekar, B.B., Verma, R., et al.: Sorption of As (III) and As (V) on chemically synthesized manganese dioxide. J. Environ. Sci. Health A 48(4), 422–428 (2013)CrossRefGoogle Scholar
  40. 40.
    He, C.N., Chen, L., Shi, C.S., Zhang, C.G., Liu, E.Z., Li, J.J., et al.: Direct synthesis of amorphous carbon nanotubes on Fe76Si9B10P5 glassy alloy particles. J. Alloy. Compd. 581, 282–288 (2013)CrossRefGoogle Scholar
  41. 41.
    Chowdhury, A.N., Azam, M.S., Aktaruzzaman, M., Rahim, A.: Oxidative and antibacterial activity of M3O4. J. Hazard. Mater. 172(2–3), 1229–1235 (2009)CrossRefGoogle Scholar
  42. 42.
    Zhang, P., Zhan, Y., Cai, B., Hao, C., Wang, J., Liu, C., et al.: Shape-controlled synthesis of Mn3O4 nanocrystals and their catalysis of the degradation of methylene blue. Nano Res., 1–9 (2010)Google Scholar
  43. 43.
    Li, F., Liu, C., Liang, C., Li, X., Zhang, L.: The oxidative degradation of 2-mercaptobenzothiazole at the interface of β-MnO2 and water. J. Hazard. Mater. 154(1–3), 1098–1105 (2008)CrossRefGoogle Scholar
  44. 44.
    Li, X., Zhou, L., Gao, J., Miao, H., Zhang, H., Xu, J.: Synthesis of Mn 3 O 4 nanoparticles and their catalytic applications in hydrocarbon oxidation. Powder Technol. 190(3), 324–326 (2009)CrossRefGoogle Scholar
  45. 45.
    Ponder, S.M., Darab, J.G., Mallouk, T.E.: Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34(12), 2564–2569 (2000)CrossRefGoogle Scholar
  46. 46.
    Kanel, S.R., Greneche, J.-M., Choi, H.: Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40(6), 2045–2050 (2006)CrossRefGoogle Scholar
  47. 47.
    Lowry, G.V., Johnson, K.M.: Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. 38(19), 5208–5216 (2004)CrossRefGoogle Scholar
  48. 48.
    Andersson, M., Österlund, L., Ljungström, S., Palmqvist, A.: Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B 106(41), 10674–10679 (2002)CrossRefGoogle Scholar
  49. 49.
    Gupta, A.K., Pal, A., Sahoo, C.: Photocatalytic degradation of a mixture of crystal violet (basic violet 3) and methyl red dye in aqueous suspensions using Ag + doped TiO2. Dyes Pigm. 69(3), 224–232 (2006)CrossRefGoogle Scholar
  50. 50.
    Mohamed, M.M., Khairou, K.S.: Preparation and characterization of nano-silver/mesoporous titania photocatalysts for herbicide degradation. Microporous Mesoporous Mater. 142(1), 130–138 (2011)CrossRefGoogle Scholar
  51. 51.
    Wu, P., Xie, R., Imlay, K., Shang, J.K.: Visible-light-induced bactericidal activity of titanium dioxide codoped with nitrogen and silver. Environ. Sci. Technol. 44(18), 6992–6997 (2010)CrossRefGoogle Scholar
  52. 52.
    Fahmey, M.S., El-Aassar, A.-H.M., Abo-Elfadel, M.M., Orabi, A.S., Das, R.: Comparative performance evaluations of nanomaterials mixed polysulfone: a scale-up approach through vacuum enhanced direct contact membrane distillation for water desalination. Desalination (2017).
  53. 53.
    Das, R., Vecitis, C.D., Schulze, A., Cao, B., Ismail, A.F., Lu, X., et al.: Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. 46(22), 6946–7020 (2017)CrossRefGoogle Scholar
  54. 54.
    Dhawan, A., Sharma, V.: Toxicity assessment of nanomaterials: methods and challenges. Anal. Bioanal. Chem. 398(2), 589–605 (2010)CrossRefGoogle Scholar
  55. 55.
    Thomas, K., Aguar, P., Kawasaki, H., Morris, J., Nakanishi, J., Savage, N.: Research strategies for safety evaluation of nanomaterials, Part VIII: international efforts to develop risk-based safety evaluations for nanomaterials. Toxicol. Sci. 92(1), 23–32 (2006)CrossRefGoogle Scholar
  56. 56.
    Baer, D.R., Gaspar, D.J., Nachimuthu, P., Techane, S.D., Castner, D.G.: Application of surface chemical analysis tools for characterization of nanoparticles. Anal. Bioanal. Chem. 396(3), 983–1002 (2010)CrossRefGoogle Scholar
  57. 57.
    Powers, K.W., Palazuelos, M., Moudgil, B.M., Roberts, S.M.: Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1), 42–51 (2007)CrossRefGoogle Scholar
  58. 58.
    Murphy, F., Sheehan, B., Mullins, M., Bouwmeester, H., Marvin, H.J., Bouzembrak, Y., et al.: A tractable method for measuring nanomaterial risk using Bayesian networks. Nanoscale Res. Lett. 11(1), 503 (2016)CrossRefGoogle Scholar
  59. 59.
    Das, R., Hamid, S.B.A., Ali, M.E., Ramakrishna, S., Yongzhi, W.: Carbon nanotubes characterization by X-ray powder diffraction—a review. Curr. Nanosci. 11, 1–13 (2015)CrossRefGoogle Scholar
  60. 60.
    Das, R., Ali, E., Abd Hamid, S.B.: Current applications of X-ray powder diffraction—a review. Rev. Adv. Mater. Sci. 38(2) (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations