Advertisement

Combining Tools for Optimization and Analysis of Floating-Point Computations

  • Heiko Becker
  • Pavel Panchekha
  • Eva Darulova
  • Zachary Tatlock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10951)

Abstract

Recent renewed interest in optimizing and analyzing floating-point programs has lead to a diverse array of new tools for numerical programs. These tools are often complementary, each focusing on a distinct aspect of numerical programming. Building reliable floating point applications typically requires addressing several of these aspects, which makes easy composition essential. This paper describes the composition of two recent floating-point tools: Herbie, which performs accuracy optimization, and Daisy, which performs accuracy verification. We find that the combination provides numerous benefits to users, such as being able to use Daisy to check whether Herbie’s unsound optimizations improved the worst-case roundoff error, as well as benefits to tool authors, including uncovering a number of bugs in both tools. The combination also allowed us to compare the different program rewriting techniques implemented by these tools for the first time. The paper lays out a road map for combining other floating-point tools and for surmounting common challenges.

References

  1. 1.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta, A., Kroening, D. (eds.) International Workshop on Satisfiability Modulo Theories, Edinburgh, UK (2010)Google Scholar
  2. 2.
    Becker, H., Panchekha, P., Darulova, E., Tatlock, Z.: Combining tools for optimization and analysis of floating-point computations. arXiv preprint arXiv:1805.02436 (2018)
  3. 3.
    Chiang, W.F., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Rakamarić, Z.: Rigorous floating-point mixed-precision tuning. In: Symposium on Principles of Programming Languages (POPL), pp. 300–315. ACM (2017)Google Scholar
  4. 4.
    Chiang, W.F., Gopalakrishnan, G., Rakamaric, Z., Solovyev, A.: Efficient search for inputs causing high floating-point errors. In: Symposium on Principles and Practice of Parallel Programming (PPoPP), vol. 49, pp. 43–52. ACM (2014)Google Scholar
  5. 5.
    Damouche, N., Martel, M., Chapoutot, A.: Intra-procedural optimization of the numerical accuracy of programs. In: Núñez, M., Güdemann, M. (eds.) FMICS 2015. LNCS, vol. 9128, pp. 31–46. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19458-5_3CrossRefMATHGoogle Scholar
  6. 6.
    Damouche, N., et al.: Toward a standard benchmark format and suite for floating-point analysis. In: Bogomolov, S., Martel, M., Prabhakar, P. (eds.) NSV 2016. LNCS, vol. 10152, pp. 63–77. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54292-8_6CrossRefGoogle Scholar
  7. 7.
    Darulova, E., Horn, E., Sharma, S.: Sound mixed-precision optimization with rewriting. In: International Conference on Cyber-Physical Systems (ICCPS) (2018)Google Scholar
  8. 8.
    Darulova, E., et al.: Daisy - framework for analysis and optimization of numerical programs (tool paper). In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 270–287. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-89960-2_15CrossRefGoogle Scholar
  9. 9.
    Darulova, E., Kuncak, V.: Towards a compiler for reals. ACM Trans. Program. Lang. Syst. (TOPLAS) 39(2), 8 (2017)CrossRefGoogle Scholar
  10. 10.
    De Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted verification of elementary functions using Gappa. In: ACM Symposium on Applied Computing, pp. 1318–1322. ACM (2006)Google Scholar
  11. 11.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_24. http://dl.acm.org/citation.cfm?id=1792734.1792766CrossRefGoogle Scholar
  12. 12.
    Goubault, E., Putot, S.: Robustness analysis of finite precision implementations. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 50–57. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03542-0_4CrossRefGoogle Scholar
  13. 13.
    IEEE Computer Society: IEEE standard for floating-point arithmetic. IEEE Std 754–2008 (2008)Google Scholar
  14. 14.
    Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)CrossRefGoogle Scholar
  15. 15.
    Magron, V., Constantinides, G., Donaldson, A.: Certified roundoff error bounds using semidefinite programming. ACM Trans. Math. Softw. 43(4), 1–34 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Moscato, M., Titolo, L., Dutle, A., Muñoz, C.A.: Automatic estimation of verified floating-point round-off errors via static analysis. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 213–229. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66266-4_14CrossRefGoogle Scholar
  17. 17.
    Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improving accuracy for floating point expressions. In: Conference on Programming Language Design and Implementation (PLDI) (2015)Google Scholar
  18. 18.
    Ramananandro, T., Mountcastle, P., Meister, B., Lethin, R.: A unified Coq framework for verifying C programs with floating-point computations. In: Certified Programs and Proofs (CPP), pp. 15–26. ACM (2016)Google Scholar
  19. 19.
    Rubio-González, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K., Bailey, D.H., Iancu, C., Hough, D.: Precimonious: tuning assistant for floating-point precision. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2013, pp. 27:1–27:12. ACM (2013)Google Scholar
  20. 20.
    Sanchez-Stern, A., Panchekha, P., Lerner, S., Tatlock, Z.: Finding root causes of floating point error with herbgrind. arXiv preprint arXiv:1705.10416 (2017)
  21. 21.
    Schkufza, E., Sharma, R., Aiken, A.: Stochastic optimization of floating-point programs with tunable precision. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2014, pp. 53–64. ACM (2014)Google Scholar
  22. 22.
    Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic Taylor expansions. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 532–550. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19249-9_33CrossRefGoogle Scholar
  23. 23.
    Zou, D., Wang, R., Xiong, Y., Zhang, L., Su, Z., Mei, H.: A genetic algorithm for detecting significant floating-point inaccuracies. In: IEEE International Conference on Software Engineering (ICSE), vol. 1, pp. 529–539. IEEE (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Heiko Becker
    • 1
  • Pavel Panchekha
    • 2
  • Eva Darulova
    • 1
  • Zachary Tatlock
    • 2
  1. 1.MPI-SWSSaarbrückenGermany
  2. 2.University of WashingtonSeattleUSA

Personalised recommendations