Advertisement

Optimal and Robust Controller Synthesis

Using Energy Timed Automata with Uncertainty
  • Giovanni Bacci
  • Patricia Bouyer
  • Uli Fahrenberg
  • Kim Guldstrand Larsen
  • Nicolas Markey
  • Pierre-Alain Reynier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10951)

Abstract

In this paper, we propose a novel framework for the synthesis of robust and optimal energy-aware controllers. The framework is based on energy timed automata, allowing for easy expression of timing constraints and variable energy rates. We prove decidability of the energy-constrained infinite-run problem in settings with both certainty and uncertainty of the energy rates. We also consider the optimization problem of identifying the minimal upper bound that will permit existence of energy-constrained infinite runs. Our algorithms are based on quantifier elimination for linear real arithmetic. Using Mathematica and Mjollnir, we illustrate our framework through a real industrial example of a hydraulic oil pump. Compared with previous approaches our method is completely automated and provides improved results.

References

  1. 1.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-57318-6_30CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45351-2_8CrossRefGoogle Scholar
  4. 4.
    Bacci, G., Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Reynier, P.-A.: Optimal and robust controller synthesis: using energy timed automata with uncertainty (2018). arXiv:1805.00847 [cs.FL]
  5. 5.
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-Tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73368-3_14CrossRefGoogle Scholar
  6. 6.
    Behrmann, G., et al.: Minimum-cost reachability for priced time automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45351-2_15CrossRefGoogle Scholar
  7. 7.
    Bemporad, A., Ferrari-Trecate, G., Morari, M.: Observability and controllability of piecewise affine and hybrid systems. IEEE Trans. Autom. Control 45(10), 1864–1876 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bisgaard, M.: Battery-aware scheduling in low orbit: the GomX–3 case. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 559–576. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48989-6_34CrossRefGoogle Scholar
  9. 9.
    Blondel, V.D., Bournez, O., Koiran, P., Tsitsiklis, J.N.: The stability of saturated linear dynamical systems is undecidable. J. Comput. Syst. Sci. 62(3), 442–462 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Blondel, V.D., Tsitsiklis, J.N.: Complexity of stability and controllability of elementary hybrid systems. Automatica 35(3), 479–489 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with observers under energy constraints. In: Johansson, K.H., Yi, W. (eds.) Proceedings of the 13th International Workshop on Hybrid Systems: Computation and Control (HSCC 2010), pp. 61–70. ACM Press, April 2010Google Scholar
  12. 12.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85778-5_4CrossRefMATHGoogle Scholar
  13. 13.
    Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound constrained runs in weighted timed automata. Perform. Eval. 73, 91–109 (2014)CrossRefGoogle Scholar
  14. 14.
    Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 577–588. Springer, Heidelberg (2006).  https://doi.org/10.1007/11787006_49CrossRefMATHGoogle Scholar
  15. 15.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005).  https://doi.org/10.1007/11539452_9CrossRefGoogle Scholar
  16. 16.
    Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Automatic synthesis of robust and optimal controllers – an industrial case study. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 90–104. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00602-9_7CrossRefMATHGoogle Scholar
  17. 17.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0028751CrossRefGoogle Scholar
  18. 18.
    David, A., et al.: On time with minimal expected cost!. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11936-6_10CrossRefGoogle Scholar
  19. 19.
    David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46681-0_16CrossRefGoogle Scholar
  20. 20.
    Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. STTT 10(3), 263–279 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jha, S., Seshia, S.A., Tiwari, A.: Synthesis of optimal switching logic for hybrid systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.) Proceedings of the 11th International Conference on Embedded Software, EMSOFT 2011, Part of the Seventh Embedded Systems Week, ESWeek 2011, Taipei, Taiwan, 9–14 October 2011, pp. 107–116. ACM (2011)Google Scholar
  22. 22.
    Markey, N.: Verification of Embedded Systems - Algorithms and Complexity. Mémoire d’habilitation, École Normale Supérieure de Cachan, France (2011)Google Scholar
  23. 23.
    Miremadi, S., Fei, Z., Åkesson, K., Lennartson, B.: Symbolic supervisory control of timed discrete event systems. IEEE Trans. Contr. Syst. Technol. 23(2), 584–597 (2015)CrossRefGoogle Scholar
  24. 24.
    Monniaux, D.: Quantifier elimination by lazy model enumeration. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14295-6_51CrossRefGoogle Scholar
  25. 25.
    Phan, A.-D., Hansen, M.R., Madsen, J.: EHRA: specification and analysis of energy-harvesting wireless sensor networks. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 520–540. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54624-2_26CrossRefMATHGoogle Scholar
  26. 26.
    Quasimodo: Quantitative system properties in model-driven design of embedded systems. http://www.quasimodo.aau.dk/
  27. 27.
    von Bochmann, G., Hilscher, M., Linker, S., Olderog, E.: Synthesizing and verifying controllers for multi-lane traffic maneuvers. Formal Asp. Comput. 29(4), 583–600 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wolfram Research, Inc.: Mathematica, Version 11.2. Champaign (2017)Google Scholar
  29. 29.
    Zhao, H., Zhan, N., Kapur, D., Larsen, K.G.: A “hybrid” approach for synthesizing optimal controllers of hybrid systems: a case study of the oil pump industrial example. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 471–485. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32759-9_38CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Giovanni Bacci
    • 1
  • Patricia Bouyer
    • 2
  • Uli Fahrenberg
    • 3
  • Kim Guldstrand Larsen
    • 1
  • Nicolas Markey
    • 4
  • Pierre-Alain Reynier
    • 5
  1. 1.Department of Computer ScienceAalborg UniversityAalborgDenmark
  2. 2.LSV, CNRS & ENS CachanUniversité Paris-SaclayCachanFrance
  3. 3.École PolytechniquePalaiseauFrance
  4. 4.Univ. Rennes, IRISA, CNRS & INRIARennesFrance
  5. 5.Aix Marseille Univ., Université de Toulon, CNRS, LISMarseilleFrance

Personalised recommendations