Advertisement

Cosmology

  • Oliver Piattella
Chapter
Part of the UNITEXT for Physics book series (UNITEXTPH)

Abstract

In this Chapter we present an overview of cosmology, addressing its most important aspects and presenting some observational experiments and open problems.

References

  1. Abbott, T.M.C., et al.: Dark energy survey year 1 results: cosmological constraints from galaxy clustering and weak lensing (2017d)Google Scholar
  2. Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016b)ADSMathSciNetCrossRefGoogle Scholar
  3. Abbott, B.P., et al.: GW151226: observation of gravitational waves from a 22-Solar-Mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016a)ADSCrossRefGoogle Scholar
  4. Abbott, B.P., et al.: A gravitational-wave standard siren measurement of the Hubble constant. Nature 551(7678), 85–88 (2017b)ADSGoogle Scholar
  5. Adam, R., et al.: Planck 2015 results. I. overview of products and scientific results. Astron. Astrophys. 594, A1 (2016)Google Scholar
  6. Ade, P.A.R., et al.: Planck 2015 results. XIII. Cosmol. Parametr. Astron. Astrophys. 594, A13 (2016a)CrossRefGoogle Scholar
  7. Alpher, R.A., Bethe, H., Gamow, G.: The origin of chemical elements. Phys. Rev. 73, 803–804 (1948)ADSCrossRefGoogle Scholar
  8. Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  9. Battye, R.A., Charnock, T., Moss, A.: Tension between the power spectrum of density perturbations measured on large and small scales. Phys. Rev. D 91(10), 103508 (2015)ADSCrossRefGoogle Scholar
  10. Bertone, G., Hooper, D.: A History of Dark Matter (2016)Google Scholar
  11. Bonvin, V., et al.: H0LiCOW V. New COSMOGRAIL time delays of HE 04351223: \(H_0\) to 3.8 per cent precision from strong lensing in a flat CDM model. Mon. Not. R. Astron. Soc. 465(4), 4914–4930 (2017)ADSCrossRefGoogle Scholar
  12. Bouchet, F.R., et al.: COrE (Cosmic Origins Explorer) A White Paper (2011)Google Scholar
  13. Boylan-Kolchin, M., Bullock, J.S., Kaplinghat, M.: Too big to fail? the puzzling darkness of massive Milky way subhaloes. Mon. Not. R. Astron. Soc. 415, L40 (2011)ADSCrossRefGoogle Scholar
  14. Bullock, J.S., Boylan-Kolchin, M.: Small-scale challenges to the \(\Lambda \)CDM paradigm. Ann. Rev. Astron. Astrophys. 55, 343–387 (2017)ADSCrossRefGoogle Scholar
  15. Clowe, D., Bradac, M., Gonzalez, A.H., Markevitch, M., Randall, S.W., Jones, C., Zaritsky, D.: A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006)ADSCrossRefGoogle Scholar
  16. Coc, A.: Primordial nucleosynthesis. J. Phys. Conf. Ser. 665(1), 012001 (2016)CrossRefGoogle Scholar
  17. de Bernardis, P., et al.: A flat universe from high resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000)ADSCrossRefGoogle Scholar
  18. Dodelson, S.: Gravitational Lensing. Cambridge University Press, UK (2017)CrossRefGoogle Scholar
  19. Dodelson, S., Widrow, L.M.: Sterile-neutrinos as dark matter. Phys. Rev. Lett. 72, 17–20 (1994)ADSCrossRefGoogle Scholar
  20. Gaskins, J.M.: A review of indirect searches for particle dark matter. Contemp. Phys. 57(4), 496–525 (2016)ADSCrossRefGoogle Scholar
  21. Grieb, J.N., et al.: The clustering of galaxies in the completed SDSS-III Baryon oscillation spectroscopic survey: cosmological implications of the fourier space wedges of the final sample. Mon. Not. R. Astron. Soc. 467(2), 2085–2112 (2017)ADSGoogle Scholar
  22. Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15, 168–173 (1929)ADSCrossRefGoogle Scholar
  23. Kirby, E.N., Bullock, J.S., Boylan-Kolchin, M., Kaplinghat, M., Cohen, J.G.: The dynamics of isolated local group galaxies. Mon. Not. R. Astron. Soc. 439(1), 1015–1027 (2014)ADSCrossRefGoogle Scholar
  24. Klypin, A.A., Kravtsov, A.V., Valenzuela, O., Prada, F.: Where are the missing Galactic satellites? Astrophys. J. 522, 82–92 (1999)ADSCrossRefGoogle Scholar
  25. Kollmeier, J.A., Zasowski, G., Rix, H.-W., Johns, M., Anderson, S.F., Drory, N., Johnson, J.A., Pogge, R.W., Bird, J.C., Blanc, G.A., Brownstein, J.R., Crane, J.D., De Lee, N.M., Klaene, M.A., Kreckel, K., MacDonald, N., Merloni, A., Ness, M.K., O’Brien, T., Sanchez-Gallego, J.R., Sayres, C.C., Shen, Y., Thakar, A.R., Tkachenko, A., Aerts, C., Blanton, M.R., Eisenstein, D.J., Holtzman, J.A., Maoz, D., Nandra, K., Rockosi, C., Weinberg, D.H., Bovy, J., Casey, A.R., Chaname, J., Clerc, N., Conroy, C., Eracleous, M., Gänsicke, B.T., Hekker, S., Horne, K., Kauffmann, J., McQuinn, K.B.W., Pellegrini, E.W., Schinnerer, E., Schlafly, E.F., Schwope, A.D., Seibert, M., Teske, J.K., van Saders, J.L.: SDSS-V: Pioneering Panoptic Spectroscopy (2017). ArXiv e-printsGoogle Scholar
  26. Lemaître, G.: A homogeneous universe of constant mass and growing radius accounting for the radial velocity of extragalactic nebulae. Ann. Soc. Sci. Brux. Ser. I Sci. Math. Astron. Phys. A47, 49–59 (1927)Google Scholar
  27. Liu, J., Chen, X., Ji, X.: Current status of direct dark matter detection experiments. Nature Phys. 13(3), 212–216 (2017)ADSCrossRefGoogle Scholar
  28. Lovell, M.R., Eke, V., Frenk, C.S., Gao, L., Jenkins, A., Theuns, T., Wang, J., White, D.M., Boyarsky, A., Ruchayskiy, O.: The haloes of bright satellite galaxies in a warm dark matter universe. Mon. Not. R. Astron. Soc. 420, 2318–2324 (2012)ADSCrossRefGoogle Scholar
  29. Macciò, A.V., Paduroiu, S., Anderhalden, D., Schneider, A., Moore, B.: Cores in warm dark matter haloes: a Catch 22 problem. Mon. Not. R. Astron. Soc. 424, 1105–1112 (2012)ADSCrossRefGoogle Scholar
  30. Macciò, A.V., Mainini, R., Penzo, C., Bonometto, S.A.: Strongly coupled dark energy cosmologies: preserving LCDM success and easing low scale problems II - cosmological simulations. Mon. Not. R. Astron. Soc. 453, 1371–1378 (2015)ADSCrossRefGoogle Scholar
  31. Marra, V., Amendola, L., Sawicki, I., Valkenburg, W.: Cosmic variance and the measurement of the local Hubble parameter. Phys. Rev. Lett. 110(24), 241305 (2013)ADSCrossRefGoogle Scholar
  32. Martin, J.: Everything you always wanted to know about the cosmological constant problem (But were afraid to ask). Comptes Rendus Physique 13, 566–665 (2012)ADSCrossRefGoogle Scholar
  33. Moore, B.: Evidence against dissipationless dark matter from observations of galaxy haloes. Nature 370, 629 (1994)ADSCrossRefGoogle Scholar
  34. Olbers, W.: Edinburgh New philso. J 1, 141 (1826)Google Scholar
  35. Peccei, R.D., Quinn, H.R.: CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440–1443 (1977)ADSCrossRefGoogle Scholar
  36. Penzias, A.A., Wilson, R.W.: A measurement of excess antenna temperature at 4080- Mc/s. Astrophys. J. 142, 419–421 (1965)ADSCrossRefGoogle Scholar
  37. Perlmutter, S., et al.: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)ADSCrossRefGoogle Scholar
  38. Profumo, S.: An Introduction to Particle Dark Matter. Advanced textbooks in physics, World Scientific (2017)CrossRefGoogle Scholar
  39. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)ADSCrossRefGoogle Scholar
  40. Sandage, A.: Current problems in the extragalactic distance scale. ApJ 127, 513 (1958)ADSCrossRefGoogle Scholar
  41. Schneider, A., Anderhalden, D., Macciò, A., Diemand, J.: Warm dark matter does not do better than cold dark matter in solving small-scale inconsistencies. Mon. Not. R. Astron. Soc. 441, 6 (2014)ADSCrossRefGoogle Scholar
  42. Schwarz, D.J., Copi, C.J., Huterer, D., Starkman, G.D.: CMB anomalies after planck. Class. Quantum Gravity 33(18), 184001 (2016)ADSCrossRefGoogle Scholar
  43. Sciama, D.W.: The Unity of the Universe. Courier Corporation (2012)Google Scholar
  44. Silk, J., et al.: Particle Dark Matter: Observations. Models and searches. Cambridge University Press, Cambridge (2010)Google Scholar
  45. Slipher, V.M.: Nebulae. Proc. Am. Philso. Soc. 56, 403–409 (1917)ADSGoogle Scholar
  46. Smoot, G.F., et al.: Structure in the COBE differential microwave radiometer first year maps. Astrophys. J. 396, L1–L5 (1992)ADSCrossRefGoogle Scholar
  47. Sofue, Y., Rubin, V.: Rotation curves of spiral galaxies. Ann. Rev. Astron. Astrophys. 39, 137–174 (2001)ADSCrossRefGoogle Scholar
  48. Sofue, Y., Tutui, Y., Honma, M., Tomita, A., Takamiya, T., Koda, J., Takeda, Y.: Central rotation curves of spiral galaxies. Astrophys. J. 523, 136 (1999)ADSCrossRefGoogle Scholar
  49. Spergel, D.N., Steinhardt, P.J.: Observational evidence for selfinteracting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000)ADSCrossRefGoogle Scholar
  50. Valkenburg, W., Marra, V., Clarkson, C.: Testing the copernican principle by constraining spatial homogeneity. Mon. Not. R. Astron. Soc. 438, L6–L10 (2014)ADSCrossRefGoogle Scholar
  51. van den Bergh, S.: The curious case of Lemaître’s equation No. 24. JRASC 105, 151 (2011)Google Scholar
  52. Velten, H.E.S., vom Marttens, R.F., Zimdahl, W.: Aspects of the cosmological coincidence problem. Eur. Phys. J. C 74(11), 3160 (2014)Google Scholar
  53. Verde, L., Protopapas, P., Jimenez, R.: Planck and the local universe: quantifying the tension. Phys. Dark Univ. 2, 166–175 (2013)CrossRefGoogle Scholar
  54. Viel, M., Becker, G.D., Bolton, J.S., Haehnelt, M.G.: Warm dark matter as a solution to the small scale crisis: new constraints from high redshift Lyman-forest data. Phys. Rev. D 88, 043502 (2013)ADSCrossRefGoogle Scholar
  55. Vogelsberger, M., Zavala, J., Simpson, C., Jenkins, A.: Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter. Mon. Not. R. Astron. Soc. 444, 3684 (2014)ADSCrossRefGoogle Scholar
  56. Warren, M.S., Abazajian, K., Holz, D.E., Teodoro, L.: Precision determination of the mass function of dark matter halos. Astrophys. J. 646, 881–885 (2006)ADSCrossRefGoogle Scholar
  57. Way, M.J., Nussbaumer, H.: Lemaître’s Hubble relationship. Phys. Today 64N8, 8 (2011)CrossRefGoogle Scholar
  58. Weinberg, S.: Dreams of a Final Theory: The Search for the Fundamental Laws of Nature (1992)Google Scholar
  59. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)Google Scholar
  60. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)ADSMathSciNetCrossRefGoogle Scholar
  61. Weinberg, S.: Cosmology. Oxford University Press, UK (2008)zbMATHGoogle Scholar
  62. Williams, R.E., Blacker, B., Dickinson, M., Dixon, W.V.D., Ferguson, H.C., Fruchter, A.S., Giavalisco, M., Gilliland, R.L., Heyer, I., Katsanis, R., Levay, Z., Lucas, R.A., McElroy, D.B., Petro, L., Postman, M., Adorf, H.-M., Hook, R.: The hubble deep field: observations, data reduction, and galaxy photometry. AJ 112, 1335 (1996)ADSCrossRefGoogle Scholar
  63. Zlatev, I., Wang, L.-M., Steinhardt, P.J.: Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896–899 (1999)ADSCrossRefGoogle Scholar
  64. Zwicky, F.: Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta 6, 110–127 (1933)ADSzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Núcleo Cosmo-UFES and Department of PhysicsFederal University of Espírito SantoVitóriaBrazil

Personalised recommendations