Molecular Guidance for Planning External Beam Radiation Therapy



The year 1895, with the discovery of X-rays, can be considered as the beginning of radiotherapy. Subsequent developments were implemented to improve the quality and precision of radiation delivery. In the last decades, radiotherapy has achieved huge technological progress leading to the introduction of intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), and volumetric modulated arc therapy (VMAT). Through the delivery of nonuniform intensities of radiation, these innovations allow a significantly more precise and effective treatment, maximizing and optimizing the dose to the target tumor mass while simultaneously minimizing exposure of the surrounding normal tissues. However, these modalities based on the anatomical data deriving from traditional simulation have obvious limitations in delineating tumor margins, because of variations in the apparent tumor size due to inflammation, edema, and necrosis. The introduction in the clinical practice of molecular imaging techniques, such as positron-emission tomography (PET) and new magnetic resonance imaging (MRI) sequences, may overcome these limitations, thanks to the visualization of surrogates of several pathophysiological characteristics of tumor tissue, such as proliferation, metabolism, hypoxia, perfusion, etc. By knowing the tissue differentiation and biology inside the tumor, the dose distribution could be tailored accordingly. As a consequence, the integration of molecular imaging in an individualized radiation treatment planning warrants a significant improvement in the ability of modern radiotherapy to precisely target tumor while limiting as much as possible the irradiation of normal tissues. The most common molecular images for tumor volume delineation and for assessment of the pathophysiological characteristics of tissues derive from PET data.


Radiotherapy Intensity-modulated radiation therapy Volumetric modulated arc therapy PET PET/CT MRI [18F]FDG [11C]MET 18F-DOPA 11C-Choline 18F-FLT 18F-MISO 18F-FAZA 64Cu-ATSM Theragnostic imaging Target volume Gross tumor volume Radiation dose painting Biological target volume Planning target volume Standardized uptake value Adaptive radiation therapy SUV thresholding Gating window Glioma Hodgkin’s disease Breast cancer Lung cancer Gastrointestinal tumors Cervical carcinoma Brain tumors 


  1. 1.
    Thorwarth D. Functional imaging for radiotherapy treatment planning: current status and future directions – a review. Br J Radiol. 2015;88(1051):20150056. Scholar
  2. 2.
    Agrawal A, Rangarajan V. Appropriateness criteria of FDG PET/CT in oncology. Indian J Radiol Imaging. 2015;25:88–101.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Baardwijk A, Baumert BG, Bosmans G, Kroonenburgh M, Stroobants S, Gregoire V, et al. The current status of FDG – PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev 2006;d:245–260.Google Scholar
  4. 4.
    Thorwarth D, Beyer T, Boellaard R, de Ruysscher D, Grgic A, Lee JA, et al. Integration of FDG-PET/CT into external beam radiation therapy planning. Nuklearmedizin. 2012;51:140–53.PubMedGoogle Scholar
  5. 5.
    Jeraj R, Bradshaw T, Simon i U. Molecular imaging to plan radiotherapy and evaluate its efficacy. J Nucl Med. 2015;56:1752–65.PubMedGoogle Scholar
  6. 6.
    Ling CC, Humm J, Larson S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys. 2000;47:551–60.PubMedGoogle Scholar
  7. 7.
    Lelandais B, Gardin I, Mouchard L, Vera P, Ruan S. Segmentation of biological target volumes on multi-tracer PET images based on information fusion for achieving dose painting in radiotherapy. Med Image Comput Comput Assist Interv. 2012;15(Pt 1):545–52.PubMedGoogle Scholar
  8. 8.
    Navarria P, Reggiori G, Pessina F, Ascolese AM, Tomatis S, Mancosu P, et al. Investigation on the role of integrated PET/MRI for target volume definition and radiotherapy planning in patients with high grade glioma. Radiother Oncol. 2014;112:425–9.PubMedGoogle Scholar
  9. 9.
    Devic S, Mohammed H, Tomic N, Aldelaijan S, De Blois F, Seuntjens J, et al. FDG-PET-based differential uptake volume histograms: a possible approach towards definition of biological target volumes. Br J Radiol. 2016;89(1062):20150388. Scholar
  10. 10.
    Saberian F, Ghate A, Kim M. A theoretical stochastic control framework for adapting radiotherapy to hypoxia. Phys Med Biol. 2016;61:7136–61.PubMedGoogle Scholar
  11. 11.
    Jiménez-Ortega E, Ureba A, Vargas A, Baeza JA, Wals-Zurita A, García-Gómez FJ, et al. Dose painting by means of Monte Carlo treatment planning at the voxel level. Phys Med. 2017;42:339–44. Scholar
  12. 12.
    Thorwarth D, Geets X, Paiusco M. Physical radiotherapy treatment planning based on functional PET/CT data. Radiother Oncol. 2010;96:317–24.PubMedGoogle Scholar
  13. 13.
    Bentzen SM, Gregoire V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol. 2011;21:101–10.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Mahase S. Current and emerging role of functional imaging in radiation therapy. Discov Med. 2015;19:2013–1.Google Scholar
  15. 15.
    Jaffray DA, Chung C, Coolens C, Foltz W, Keller H, Menard C, et al. Quantitative imaging in radiation oncology: an emerging science and clinical service. Semin Radiat Oncol. 2015;25:292–304.PubMedGoogle Scholar
  16. 16.
    Chiti A, Kirienko M, Grégoire V. Clinical use of PET-CT data for radiotherapy planning: what are we looking for? Radiother Oncol. 2010;96:277–9.PubMedGoogle Scholar
  17. 17.
    Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015;42:40–53.PubMedGoogle Scholar
  18. 18.
    Das SK, Ten Haken RK. Functional and molecular image guidance in radiotherapy treatment planning optimization. Semin Radiat Oncol. 2011;21:111–8.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Hatt M, Lee JA, Schmidtlein CR, Naqa IE, Caldwell C, De Bernardi E, et al. Classification and evaluation strategies of auto-segmentation approaches for PET: report AAPM task group no. 211. Med Phys. 2017;44:e1–e42.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Matheoud R, Della Monica P, Loi G, Vigna L, Krengli M, Inglese E, et al. Influence of reconstruction settings on the performance of adaptive thresholding algorithms for FDG-PET image segmentation in radiotherapy planning. J Appl Clin Med Phys. 2011;12:3363.PubMedGoogle Scholar
  21. 21.
    Obara P, Liu H, Wroblewski K, Zhang CP, Hou P, Jiang Y, Chen P, Pu Y. Quantification of metabolic tumor activity and burden in patients with non-small-cell lung cancer: is manual adjustment of semiautomatic gradient-based measurements necessary? Nucl Med Commun. 2015;36:782–9.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Giri MG, Cavedon C, Mazzarotto R, Ferdeghini M. A Dirichlet process mixture model for automatic 18F-FDG PET image segmentation: validation study on phantoms and on lung and esophageal lesions. Med Phys. 2016;43:2491.PubMedGoogle Scholar
  23. 23.
    Berthon B, Marshall C, Evans M, Spezi E. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography. Phys Med Biol. 2016;61:4855–69.PubMedGoogle Scholar
  24. 24.
    Bettinardi V, Picchio M, Di Muzio N, Gianolli L, Gilardi MC, Messa C. Detection and compensation of organ/lesion motion using 4D-PET/CT respiratory gated acquisition techniques. Radiother Oncol. 2010;96:311–6.PubMedGoogle Scholar
  25. 25.
    Chi A, Nguyen NP. 4D PET/CT as a strategy to reduce respiratory motion artifacts in FDG-PET/CT. Front Oncol. 2014;4:205.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Tsoumpas C, Buerger C, King AP, Mollet P, Keereman V, Vandenberghe S, Schulz V, Schleyer P, Schaeffter T, Marsden PK. Fast generation of 4D PET-MR data from real dynamic MR acquisitions. Phys Med Biol. 2011;56(20):6597–613.PubMedGoogle Scholar
  27. 27.
    Gianoli C, Riboldi M, Fontana G, Giri MG, Grigolato D, Ferdeghini M, et al. Optimized PET imaging for 4D treatment planning in radiotherapy: the virtual 4D PET strategy. Technol Cancer Res Treat. 2015;14:99–110.PubMedGoogle Scholar
  28. 28.
    Bowen SR, Nyflot MJ, Herrmann C, Groh CM, Meyer J, Wollenweber SD, et al. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study. Phys Med Biol. 2015;60:3731–46.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Shi X, Meng X, Sun X, Xing L, Yu J. PET/CT imaging-guided dose painting in radiation therapy. Cancer Lett. 2014;355:169–75.PubMedGoogle Scholar
  30. 30.
    Ford EC, Herman J, Yorke E, Wahl RL. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. J Nucl Med. 2009;50:1655–65.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Grégoire V, Chiti A. PET in radiotherapy planning: particularly exquisite test or pending and experimental tool? Radiother Oncol. 2010;96:275–6.PubMedGoogle Scholar
  32. 32.
    Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med. 2008;50:88–99.Google Scholar
  33. 33.
    Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2014;42:328–54.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Nuyts S, Fairchild A. Head and neck cancer imaging. In: Hermans R, editor. Head and neck cancer imaging. Berlin: Springer-Verlag; 2012. p. 387–408.Google Scholar
  35. 35.
    Daisne J-F, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology. 2004;233:93–100.PubMedGoogle Scholar
  36. 36.
    Marta GN, Silva V, De Andrade Carvalho H, De Arruda FF, Hanna SA, Gadia R, et al. Intensity-modulated radiation therapy for head and neck cancer: systematic review and meta-analysis. Radiother Oncol. 2014;110:9–15.PubMedGoogle Scholar
  37. 37.
    Grégoire V, Langendijk JA, Nuyts S. Advances in radiotherapy for head and neck cancer. J Clin Oncol. 2015;33:3277–84.PubMedGoogle Scholar
  38. 38.
    Troost EGC, Schinagl DAX, Bussink J, Oyen WJG, Kaanders JHAM. Clinical evidence on PET-CT for radiation therapy planning in head and neck tumours. Radiother Oncol. 2010;96:328–34.PubMedGoogle Scholar
  39. 39.
    De Ruysscher D, Nestle U, Jeraj R, MacManus M. PET scans in radiotherapy planning of lung cancer. Lung Cancer. 2012;75:141–5.PubMedGoogle Scholar
  40. 40.
    Konert T, Vogel W, MacManus MP, Nestle U, Belderbos J, Grégoire V, et al. PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol. 2015;116:27–34.PubMedGoogle Scholar
  41. 41.
    Sindoni A, Minutoli F, Pontoriero A, Iatì G, Baldari S, Pergolizzi S. Usefulness of four dimensional (4D) PET/CT imaging in the evaluation of thoracic lesions and in radiotherapy planning: review of the literature. Lung Cancer. 2016;96:78–86.PubMedGoogle Scholar
  42. 42.
    Lambrecht M, Haustermans K. Clinical evidence on PET-CT for radiation therapy planning in gastro-intestinal tumors. Radiother Oncol. 2010;96:339–46.PubMedGoogle Scholar
  43. 43.
    Mamede M, El FG, Abreu-E-Lima P, Gandler W, Nosé V, Gerbaudo VH. Pre-operative estimation of esophageal tumor metabolic length in FDG-PET images with surgical pathology confirmation. Ann Nucl Med. 2007;21:553–62.PubMedGoogle Scholar
  44. 44.
    Zhong X, Yu J, Zhang B, Mu D, Zhang W, Li D, et al. Using 18F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys. 2009;73:136–41.PubMedGoogle Scholar
  45. 45.
    Haie-Meder C, Mazeron R, Magné N. Clinical evidence on PET-CT for radiation therapy planning in cervix and endometrial cancers. Radiother Oncol. 2010;96:351–5.PubMedGoogle Scholar
  46. 46.
    Haubner R. PET radiopharmaceuticals in radiation treatment planning – synthesis and biological characteristics. Radiother Oncol. 2010;96:280–7.PubMedGoogle Scholar
  47. 47.
    Fueger BJ, Czernin J, Cloughesy T, Silverman DH, Geist CL, Walter MA, et al. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med. 2010;51:1532–8.PubMedGoogle Scholar
  48. 48.
    Sharma P, Mukherjee A. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview. Ann Transl Med. 2016;4(3):53. Scholar
  49. 49.
    Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351:1731–40.PubMedGoogle Scholar
  50. 50.
    Zhang G, Han D, Ma C, Lu J, Sun T, Liu T, et al. Gradient-based delineation of the primary GTV on FLT PET in squamous cell cancer of the thoracic esophagus and impact on radiotherapy planning. Radiat Oncol. 2015;10:11. Scholar
  51. 51.
    Grosu A-L, Souvatzoglou M, Röper B, Dobritz M, Wiedenmann N, Jacob V, et al. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;69:541–51.PubMedGoogle Scholar
  52. 52.
    Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology. 2016;18:1199–208.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49:694–9.PubMedGoogle Scholar
  54. 54.
    Lee IH, Piert M, Gomez-Hassan D, Junck L, Rogers L, Hayman J, et al. Association of 11C-methionine PET uptake with site of failure after concurrent temozolomide and radiation for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2009;73:479–85.PubMedGoogle Scholar
  55. 55.
    Weber DC, Casanova N, Zilli T, Buchegger F, Rouzaud M, Nouet P, et al. Recurrence pattern after [18F]fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma: a prospective study. Radiother Oncol. 2009;93:586–92.PubMedGoogle Scholar
  56. 56.
    Niyazi M, Schnell O, Suchorska B, Schwarz SB, Ganswindt U, Geisler J, et al. FET-PET assessed recurrence pattern after radio-chemotherapy in newly diagnosed patients with glioblastoma is influenced by MGMT methylation status. Radiother Oncol. 2012;104:78–82.PubMedGoogle Scholar
  57. 57.
    Miwa K, Matsuo M, Ogawa S, Shinoda J, Yokoyama K, Yamada J, et al. Re-irradiation of recurrent glioblastoma multiforme using 11C-methionine PET/CT/MRI image fusion for hypofractionated stereotactic radiotherapy by intensity modulated radiation therapy. Radiat Oncol. 2014;9:181. Scholar
  58. 58.
    Graf R, Plotkin M, Steffen IG, Wurm R, Wust P, Brenner W, et al. Magnetic resonance imaging, computed tomography, and 68Ga-DOTATOC positron emission tomography for imaging skull base meningiomas with infracranial extension treated with stereotactic radiotherapy – a case series. Head Face Med. 2012;8:1. Scholar
  59. 59.
    Combs SE, Welzel T, Habermehl D, Rieken S, Dittmar J-O, Kessel K, et al. Prospective evaluation of early treatment outcome in patients with meningiomas treated with particle therapy based on target volume definition with MRI and 68Ga-DOTATOC-PET. Acta Oncol. 2013;52:514–20.PubMedGoogle Scholar
  60. 60.
    Geets X, Daisne J-F, Grégoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol. 2004;71:267–73.PubMedGoogle Scholar
  61. 61.
    Toubaru S, Yoshikawa K, Ohashi S, Tanimoto K, Hasegawa A, Kawaguchi K, et al. Accuracy of methionine-PET in predicting the efficacy of heavy-particle therapy on primary adenoid cystic carcinomas of the head and neck. Radiat Oncol. 2013;8:143. Scholar
  62. 62.
    Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, et al. [11C]Choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging. 2008;35:1065–73.PubMedGoogle Scholar
  63. 63.
    Kuban DA, Tucker SL, Dong L, Starkschall G, Huang EH, Cheung MR, et al. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70:67–74.PubMedGoogle Scholar
  64. 64.
    Soyka JD, Muster MA, Schmid DT, Seifert B, Schick U, Miralbell R, et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2012;39:936–43.PubMedGoogle Scholar
  65. 65.
    Grosu A-L, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol. 2005;181:483–99.PubMedGoogle Scholar
  66. 66.
    Würschmidt F, Petersen C, Wahl A, Dahle J, Kretschmer M. [18F]fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes. Radiat Oncol. 2011;6(1):44. Scholar
  67. 67.
    Souvatzoglou M, Krause BJ, Pürschel A, Thamm R, Schuster T, Buck AK, et al. Influence of 11C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol. 2011;99:193–200.PubMedGoogle Scholar
  68. 68.
    Ceci F, Castellucci P, Mapelli P, Incerti E, Picchio M, Fanti S. Evaluation of prostate cancer with 11C-choline PET/CT for treatment planning, response assessment, and prognosis. J Nucl Med. 2016;57(Suppl 3):49S–54S.PubMedGoogle Scholar
  69. 69.
    Jereczek-Fossa BA, Rodari M, Bonora M, Fanti P, Fodor C, Pepe G, et al. [11C]choline PET/CT impacts treatment decision making in patients with prostate cancer referred for radiotherapy. Clin Genitourin Cancer. 2014;12:155–9.PubMedGoogle Scholar
  70. 70.
    Alongi F, Fersino S, Giaj Levra N, Mazzola R, Ricchetti F, Fiorentino A, et al. Impact of 18F-choline PET/CT in the decision-making strategy of treatment volumes in definitive prostate cancer volumetric modulated radiation therapy. Clin Nucl Med. 2015;40:e496–500.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Kairemo K, Rasulova N, Kiljunen T, Partanen K, Kangasmäki A, Joensuu T. PET/CT dose planning for volumetric modulated arc radiation therapy (VMAT) – Comparison with conventional approach in advanced prostate cancer patients. Curr Radiopharm. 2015;8:2–8.PubMedGoogle Scholar
  72. 72.
    Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. 68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2017;44:1014–24.PubMedGoogle Scholar
  73. 73.
    Kratochwil C, Afshar-oromieh A, Kopka K, Haberkorn U, Giesel FL. Current status of prostate-specific membrane antigen targeting in nuclear medicine: clinical translation of chelator containing prostate-specific membrane antigen ligands into diagnostics and therapy for prostate cancer. Semin Nucl Med. 2016;46:405–18.PubMedGoogle Scholar

Further Reading

  1. Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology. 2016;18:1199–208.PubMedPubMedCentralGoogle Scholar
  2. Bentzen S. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol. 2005;6:112–7.PubMedGoogle Scholar
  3. Buglione M, Cavagnini R, Di Rosario F, Sottocornola L, Maddalo M, Vassalli L, et al. Oral toxicity management in head and neck cancer patients treated with chemotherapy and radiation: dental pathologies and osteoradionecrosis (part 1) literature review and consensus statement. Crit Rev Oncol Hematol. 2016;97:131–42.PubMedGoogle Scholar
  4. De Rose F, Franceschini D, Reggiori G, Stravato A, Navarria P, Ascolese AM, et al. Organs at risk in lung SBRT. Phys Med. 2017;44:131–8.PubMedGoogle Scholar
  5. De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Péchoux C, et al. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol. 2017;28(36):5301–10.Google Scholar
  6. Ellingson BM, Chung C, Pope WB, Boxerman JL, Kaufmann TJ. Pseudoprogression, radionecrosis, inflammation or true tumor progression? Challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neuro-Oncol. 2017;
  7. Erba PA, Boni R, Sollini M. Nuclear medicine imaging and cardiotoxicity. In: Lancellotti P, Zamorano Gomez JL, Galderisi M, editors. Anti-cancer treatments and cardiotoxicity: mechanism, diagnostic and therapeutic interventions. Tokyo: Academic; 2017. p. 183–241.Google Scholar
  8. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42:1S–93S.PubMedGoogle Scholar
  9. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77. Scholar
  10. Graham MM, Wahl RL, Hoffman JM, Yap JT, Sunderland JJ, Boellaard R, et al. Summary of the UPICT protocol for 18F-FDG PET/CT imaging in oncology clinical trials. J Nucl Med. 2015;56:955–61.PubMedPubMedCentralGoogle Scholar
  11. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33:3874–900.PubMedGoogle Scholar
  12. Lancellotti P, Nkomo VT, Badano LP, Bergler-Klein J, Bogaert J, Davin L, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2013;26:1013–32.PubMedGoogle Scholar
  13. Otto Warburg B, Wind F, Negelein N. The metabolism of tumors in the body. J Gen Physiol. 1923;309:397–519.Google Scholar
  14. Partridge M, Yamamoto T, Grau C, Høyer M, Muren LP. Imaging of normal lung, liver and parotid gland function for radiotherapy. Acta Oncol. 2010;49:997–1011.PubMedGoogle Scholar
  15. Pasqualetti F, Panichi M, Sainato A, Matteucci F, Galli L, Cocuzza P, et al. [18F]Choline PET/CT and stereotactic body radiotherapy on treatment decision making of oligometastatic prostate cancer patients: preliminary results. Radiat Oncol. 2016;11:9. Scholar
  16. PDQ Supportive and Palliative Care Editorial Board. Oral complications of chemotherapy and head/neck radiation (PDQ®): health professional version. PDQ cancer information summaries [Internet]. Bethesda, MD: National Cancer Institute (US); 16 Dec 2002–2016.Google Scholar
  17. Peeken JC, Nüsslin F, Combs SE. “Radio-oncomics”: the potential of radiomics in radiation oncology. Strahlenther Onkol. 2017;
  18. Sharma P, Mukherjee A. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview. Ann Transl Med. 2016;4:53. Scholar
  19. Skórska M, Piotrowski T. Personalized radiotherapy treatment planning based on functional imaging. Rep Pract Oncol Radiother. 2017;22:327–30.PubMedPubMedCentralGoogle Scholar
  20. Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mater. 2017;
  21. Ulaner GA, Lyall A. Identifying and distinguishing treatment effects and complications from malignancy at FDG PET/CT. Radiographics. 2013;33:1817–34.PubMedGoogle Scholar
  22. Zeglis BM, Holland JP, Lebedev AY, Cantorias MV, Lewis JS. Radiopharmaceuticals for imaging in oncology with special emphasis on positron-emitting agents. In: Strauss HW, Mariani G, Volterrani D, Larson SM, editors. Nuclear oncology – pathophysiology and clinical applications. New York, NY: Springer; 2013. p. 35–78.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nuclear Medicine Unit“Maggiore della Carità” University HospitalNovaraItaly
  2. 2.Nuclear MedicineHumanitas Cancer and Research Center IRCCSRozzanoItaly
  3. 3.Department of Biomedical SciencesHumanitas UniversityMilanItaly
  4. 4.Radiotherapy and RadiosurgeryHumanitas Cancer and Research Center IRCCSRozzanoItaly
  5. 5.Nuclear Medicine Unit, Department of Oncology and Advanced TechnologiesAUSL-IRCCS Reggio EmiliaReggio EmiliaItaly
  6. 6.Nuclear Medicine Unit and Medical Physics UnitUniversity Hospital of VeronaVeronaItaly
  7. 7.Regional Center of Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and Surgery, UUniversity of PisaPisaItaly

Personalised recommendations