Hybrid Imaging and Radionuclide Therapy of Neuroendocrine Tumors

  • Duccio VolterraniEmail author
  • Lisa Bodei
  • Federica Guidoccio


Neuroendocrine tumors (NETs) constitute a heterogeneous group of rare tumors that arise from cells of the neuroendocrine system. The term “neuroendocrine” relates to the ability of these cells to produce and store amines and peptide hormones produced by both the endocrine system and the nervous systems: gastrin, insulin, serotonin, somatostatin, glucagon, pancreatic polypeptide, vasoactive intestinal peptide (VIP), catecholamines, ACTH, GH, prolactin, FSH, LH, TSH, and PTH. Although NETs differ widely in their biology and clinical presentation, they share the capability to produce certain biological compounds (chromogranins and synaptophysin) that are considered specific markers of neuroendocrine cells [1].


Neuroendocrine tumors Expression of somatostatin receptors Neuramine uptake 111In-pentetreotide scintigraphy PETC/CT with 68Ga-DOTA-TATE/68Ga-DOTA-NOC/68Ga-DOTA-TOC 123I-MIBG scintigraphy PET/CT with 18F-DOPA PET/CT PET/CT with [18F]FDG Peptide receptor radionuclide therapy 90Y-DOTA-TATE/90Y-DOTA-NOC/90Y-DOTA-TOC 177Lu-DOTA-TATE/177Lu-DOTA-NOC/177Lu-DOTA-TOC 


  1. 1.
    Polak JM, Bloom SR. Regulatory peptides of the gastrointestinal and respiratory tracts. Arch Int Pharmacodyn Ther. 1986;280:16–49.PubMedGoogle Scholar
  2. 2.
    Wong F, Kim E. Peptide receptor imaging. In: Kim E, Yang D, editors. Targeted molecular imaging in oncology. New York: Springer; 2011. p. 102–10.Google Scholar
  3. 3.
    Hillel PG, van Beek EJ, Taylor C, Lorenz E, Bax ND, Prakash V, et al. The clinical impact of a combined gamma camera/CT imaging system on somatostatin receptor imaging of neuroendocrine tumours. Clin Radiol. 2006;61:579–87.CrossRefGoogle Scholar
  4. 4.
    Perri M, Erba P, Volterrani D, Lazzeri E, Boni G, Grosso M, et al. Octreo-SPECT/CT imaging for accurate detection and localization of suspected neuroendocrine tumors. Q J Nucl Med Mol Imaging. 2008;52:323–33.PubMedGoogle Scholar
  5. 5.
    Kwekkeboom DJ, Krenning EP, Scheidhauer K, Lewington V, Lebtahi R, Grossman A, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: somatostatin receptor imaging with 111In-pentetreotide. Neuroendocrinology. 2009;90:184–9.CrossRefGoogle Scholar
  6. 6.
    Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy. J Nucl Med. 2000;41:1704–13.PubMedGoogle Scholar
  7. 7.
    Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, et al. Somatostatin receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17:R53–73.CrossRefGoogle Scholar
  8. 8.
    Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schäfer M, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34:1617–26.CrossRefGoogle Scholar
  9. 9.
    Junik R, Drobik P, Malkowski B, Kobus-Blachnio K. The role of positron emission tomography (PET) in diagnostics of gastroenteropancreatic neuroendocrine tumours (GEP NET). Adv Med Sci. 2006;51:66–8.PubMedGoogle Scholar
  10. 10.
    Cecchin D, Lumachi F, Marzola MC, Opocher G, Scaroni C, Zucchetta P, et al. A meta-iodobenzylguanidine scintigraphic scoring system increases accuracy in the diagnostic management of pheochromocytoma. Endocr Relat Cancer. 2006;13:525–33.CrossRefGoogle Scholar
  11. 11.
    Nakatani T, Hayama T, Uchida J, Nakamura K, Takemoto Y, Sugimura K. Diagnostic localization of extra-adrenal pheochromocytoma: comparison of 123I-MIBG imaging and 131I-MIBG imaging. Oncol Rep. 2002;9:1225–7.PubMedGoogle Scholar
  12. 12.
    Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, Maffioli L, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37:2436–46.CrossRefGoogle Scholar
  13. 13.
    Fottner C, Helisch A, Anlauf M, Rossmann H, Musholt TJ, Kreft A, et al. 6-18F-fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to 123I-metaiodobenzyl-guanidine scintigraphy in the detection of extraadrenal and hereditary pheochromocytomas and paragangliomas: correlation with vesicular monoamine transporter expression. J Clin Endocrinol Metab. 2010;95:2800–10.CrossRefGoogle Scholar
  14. 14.
    Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH. Differential expression of two vesicular monoamine transporters. J Neurosci. 1995;15:6179–88.CrossRefGoogle Scholar
  15. 15.
    Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, et al. Comparison between 68Ga-DOTA-NOC and 18FDOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:1431–8.CrossRefGoogle Scholar
  16. 16.
    Haug A, Auernhammer CJ, Wangler B, Tiling R, Schmidt G, Goke B, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36:765–70.CrossRefGoogle Scholar
  17. 17.
    Mohnike K, Blankenstein O, Minn H, Mohnike W, Fuchtner F, Otonkoski T. [18F]-DOPA positron emission tomography for preoperative localization in congenital hyperinsulinism. Horm Res. 2008;70:65–72.CrossRefGoogle Scholar
  18. 18.
    Oh S, Prasad V, Lee DS, Baum RP. Effect of peptide receptor radionuclide therapy on somatostatin receptor status and glucose metabolism in neuroendocrine tumors: intraindividual comparison of Ga-68 DOTANOC PET/CT and F-18 FDG PET/CT. Int J Mol Imaging. 2011:524130. Epub 2011 Nov 9
  19. 19.
    Severi S, Nanni O, Bodei L, Sansovini M, Ianniello A, Nicoletti S, et al. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:881–8.CrossRefGoogle Scholar
  20. 20.
    Pacak K, Eisenhofer G, Ilias I. Diagnosis of pheochromocytoma with special emphasis on MEN2 syndrome. Hormones (Athens). 2009;8:111–6.Google Scholar
  21. 21.
    Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Hörsch D, O’Dorisio TM, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Esser JP, Krenning EP, Teunissen JJ, Kooij PP, van Gameren AL, Bakker WH, et al. Comparison of [177Lu-DOTA0,Tyr3]octreotate and [177Lu-DOTA0,Tyr3]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;33:1346–51.CrossRefGoogle Scholar
  23. 23.
    Virgolini I, Britton K, Buscombe J, Moncayo R, Paganelli G, Riva P. In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin Nucl Med. 2002;32:148–55.CrossRefGoogle Scholar
  24. 24.
    Wehrmann C, Senftleben S, Zachert C, Muller D, Baum RP. Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu-DOTA-TATE and 177Lu-DOTA-NOC. Cancer Biother Radiopharm. 2007;22:406–16.CrossRefGoogle Scholar
  25. 25.
    Bodei L, Cremonesi M, Ferrari M, Pacifici M, Grana CM, Bartolomei M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35:1847–56.CrossRefGoogle Scholar
  26. 26.
    Jamar F, Barone R, Mathieu I, Walrand S, Labar D, Carlier P, et al. (86YDOTA0)-D-Phe1-Tyr3-octreotide (SMT487) – a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging. 2003;30:510–8.CrossRefGoogle Scholar
  27. 27.
    Bodei L, Cremonesi M, Grana C, Rocca P, Bartolomei M, Chinol M, et al. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2004;31:1038–46.CrossRefGoogle Scholar
  28. 28.
    Rolleman EJ, Melis M, Valkema R, Boerman OC, Krenning EP, de Jong M. Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues. Eur J Nucl Med Mol Imaging. 2010;37:1018–31.CrossRefGoogle Scholar
  29. 29.
    Giammarile F, Chiti A, Lassmann M, Brans B, Flux G. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008;35:1039–47.CrossRefGoogle Scholar
  30. 30.
    Castellani MR, Seghezzi S, Chiesa C, Aliberti GL, Maccauro M, Seregni E, et al. 131I-MIBG treatment of pheochromocytoma: low versus intermediate activity regimens of therapy. Q J Nucl Med Mol Imaging. 2010;54:100–13.PubMedGoogle Scholar
  31. 31.
    Hoefnagel CA, Voute PA, De Kraker J, Valdes Olmos RA. [131I]metaiodobenzylguanidine therapy after conventional therapy for neuroblastoma. J Nucl Biol Med. 1991;35:202–6.PubMedGoogle Scholar
  32. 32.
    Howard JP, Maris JM, Kersun LS, Huberty JP, Cheng SC, Hawkins RA, et al. Tumor response and toxicity with multiple infusions of high dose 131I-MIBG for refractory neuroblastoma. Pediatr Blood Cancer. 2005;44:232–9.CrossRefGoogle Scholar
  33. 33.
    Lashford LS, Lewis IJ, Fielding SL, Flower MA, Meller S, Kemshead JT, et al. Phase I/II study of iodine 131 metaiodobenzylguanidine in chemoresistant neuroblastoma: a United Kingdom Children’s Cancer Study Group investigation. J Clin Oncol. 1992;10:1889–96.CrossRefGoogle Scholar
  34. 34.
    Matthay KK, Yanik G, Messina J, Quach A, Huberty J, Cheng SC, et al. Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol. 2007;25:1054–60.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Duccio Volterrani
    • 1
    Email author
  • Lisa Bodei
    • 2
  • Federica Guidoccio
    • 1
  1. 1.Regional Center of Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
  2. 2.Molecular Imaging and Therapy Service, Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations