Advertisement

Hybrid Imaging in Non-thyroidal Endocrinological Disorders

  • Duccio VolterraniEmail author
  • Federica Guidoccio
  • Giuliano Mariani
Chapter

Abstract

Adrenal glands are two organs of the endocrine system that secrete different types of hormones. They are located in the retroperitoneal space, surrounded by a thick fibrous capsule, placed immediately below the diaphragm, superiorly and medially to the kidneys, between the 12th thoracic and the 1st lumbar vertebra. They have a cone shape with an inferior base, a weight of about 8 g, and sizes of about 2–3 cm in width and 4–6 cm in length. They are richly vascularized, innervated by the autonomous system, mainly through the adrenal plexus. Each adrenal consists of two distinct parts: a peripheral part, called adrenal cortex, and a central part, called adrenal medulla.

Keywords

Adrenal glands Adrenal cortex Adrenal medulla Radionuclide imaging of adrenal cortex 131I-6-β-iodo-methyl-norcholesterol Radionuclide imaging of adrenal cortex 75Se-6-β-seleno-methyl-norcholesterol Cushing’s syndrome Cushing’s disease Hyperaldosteronism Hyperandrogenism Adrenal incidentalomas Radionuclide imaging of adrenal medulla Meta-iodobenzylguanidine 111In-pentetreotide Pheochromocytoma 18F-DOPA [18F]FDG Parathyroid glands Primary hyperparathyroidism Secondary hyperparathyroidism Tertiary hyperparathyroidism 99mTc-Sestamibi 123I-iodide 99mTc-Pertechnetate 18F-fluorochholine Double-tracer subtraction parathyroid scintigraphy Single-tracer dual-phase parathyroid scintigraphy 

References

  1. 1.
    Gross BH, Shapiro B. Adrenocortical scintigraphy. In: Khalkhali I, Maublant J, Goldsmith S, editors. Nuclear oncology. Philadelphia, PA: Lippincott Williams & Wilkins; 2001. p. 461–74.Google Scholar
  2. 2.
    Gross MD, Shapiro B, Shreve P. Radionuclide imaging of the adrenal cortex. Q J Nucl Med. 1999;43:224–32.PubMedGoogle Scholar
  3. 3.
    Francis IR, Gross MD, Shapiro B, Korobkin M, Quint LE. Integrated imaging of adrenal disease. Radiology. 1992;184:1–13.CrossRefGoogle Scholar
  4. 4.
    Nocaudie-Calzada M, Huglo D, Lambert M, Ernst O, Proye C, Wemeau JL, et al. Efficacy of iodine-131 6-beta-methyl-iodo-19-norcholesterol scintigraphy and computed tomography in patients with primary aldosteronism. Eur J Nucl Med. 1999;26:1326–32.PubMedGoogle Scholar
  5. 5.
    Troncone L, Rufini V. Nuclear medicine therapy of pheochromocytoma and paraganglioma. Q J Nucl Med. 1999;43:344–55.PubMedGoogle Scholar
  6. 6.
    Sisson JC, Frager MS, Valk TW, Gross MD, Swanson DP, Wieland DM, et al. Scintigraphic localization of pheochromocytoma. N Engl J Med. 1981;305:12–7.CrossRefGoogle Scholar
  7. 7.
    Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with [111ln-DTPA-D-Phel]- and [1231- Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20:716–31.CrossRefGoogle Scholar
  8. 8.
    van der Harst E, de Herder WW, Bruining HA, Bonjer HJ, de Krijger RR, Lamberts SW, et al. [123I]metaiodobenzylguanidine and [11lIn]octreotide uptake in benign and malignant pheochromocytomas. J Clin Endocrinol Metab. 2001;86:685–93.PubMedGoogle Scholar
  9. 9.
    Kwekkeboom DJ, van Urk H, Pauw BK, Lamberts SW, Kooij PP, Hoogma RP, et al. Octreotide scintigraphy for the detection of paragangliomas. J Nucl Med. 1993;34:873–8.PubMedGoogle Scholar
  10. 10.
    Maurea S, Cuocolo A, Reynolds JC, Tumeh SS, Begley MG, Linehan WM, et al. Iodine-131-metaiodobenzylguanidine scintigraphy in preoperative and postoperative evaluation of paragangliomas: comparison with CT and MRI. J Nucl Med. 1993;34:173–9.PubMedGoogle Scholar
  11. 11.
    Berglund AS, Hulthen UL, Manhem P, Thorsson O, Wollmer P, Törnquist C. Metaiodobenzylguanidine (MIBG) scintigraphy and computed tomography (CT) in clinical practice. Primary and secondary evaluation for localization of phaeochromocytomas. J Intern Med. 2001;249:247–51.CrossRefGoogle Scholar
  12. 12.
    Shapiro B, Copp JE, Sisson JC, Eyre PL, Wallis J, Beierwaltes WH. Iodine-131 metaiodobenzylguanidine for the locating of suspected pheochromocytoma: experience in 400 cases. J Nucl Med. 1985;26:576–85.PubMedGoogle Scholar
  13. 13.
    Velchik MG, Alavi A, Kressel HY, Engelman K. Localization of pheochromocytoma: MIGB, CT, and MRI correlation. J Nucl Med. 1989;30:328–36.PubMedGoogle Scholar
  14. 14.
    Francis IR, Glazer GM, Shapiro B, Sisson JC, Gross BH. Complementary roles of CT and 131I-MIBG scintigraphy in diagnosing pheochromocytoma. AJR Am J Roentgenol. 1983;141:719–25.CrossRefGoogle Scholar
  15. 15.
    Furuta N, Kiyota H, Yoshigoe F, Hasegawa N, Ohishi Y. Diagnosis of pheochromocytoma using [1231]- compared with [1311]-metaiodobenzylguanidine scintigraphy. Int J Urol. 1999;6:119–24.CrossRefGoogle Scholar
  16. 16.
    Lynn MD, Shapiro B, Sisson JC, Beierwaltes WH, Meyers LJ, Ackerman R, et al. Pheochromocytoma and the normal adrenal medulla: improved visualization with I-123 MIBG scintigraphy. Radiology. 1985;155:789–92.CrossRefGoogle Scholar
  17. 17.
    Pasquali C, Rubello D, Sperti C, Gasparoni P, Liessi G, Chierichetti F, et al. Neuroendocrine tumor imaging: can 18F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? World J Surg. 1998;22:588–92.CrossRefGoogle Scholar
  18. 18.
    Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson JC. Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology. 1999;212:35–41.CrossRefGoogle Scholar
  19. 19.
    Bergström M, Bonasera TA, Lu L, Bergström E, Backlin C, Juhlin C, et al. In vitro and in vivo primate evaluation of carbon-11-etomidate and carbon-11-metomidate as potential tracers for PET imaging of the adrenal cortex and its tumors. J Nucl Med. 1998;39:982–9.PubMedGoogle Scholar
  20. 20.
    Mariani G, Gulec SA, Rubello D, Boni G, Puccini M, Pelizzo MR, et al. Preoperative localization and radioguided parathyroid surgery. J NUcl Med. 2003;44:1443–58.Google Scholar
  21. 21.
    Goodwin DA, Crowley LG, Camargo CA. Localization of a mediastinal adenoma by selenomethionine Se75 scanning. JAMA. 1969;208:2333–5.CrossRefGoogle Scholar
  22. 22.
    DiGiulio W, Morales JO. The value of the selenomethionine Se 75 scan in preoperative localization of parathyroid adenomas. JAMA. 1969;209:1873–80.CrossRefGoogle Scholar
  23. 23.
    Coakley AJ, Kettle AG, Wells CP, O’Doherty MJ, Collins RE. 99Tcm sestamibi – a new agent for parathyroid imaging. Nucl Med Commun. 1989;10:791–4.CrossRefGoogle Scholar
  24. 24.
    Mitchell BK, Cornelius EA, Zoghbi S, Murren JR, Ghoussoub R, Flynn SD, Kinder BK. Mechanism of technetium 99m sestamibi parathyroid imaging and the possible role of p-glycoprotein. Surgery. 1996;120:1039–45.CrossRefGoogle Scholar
  25. 25.
    Taillefer R, Boucher Y, Potvin C, Lambert R. Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study). J Nucl Med. 1992;33:1801–17.PubMedGoogle Scholar
  26. 26.
    Michaud L, Balogova S, Burgess A, Ohnona J, Huchet V, Kerrou K, et al. A pilot comparison of 18F-fluorocholine PET/CT, ultrasonography and 123I/99mTc-sestaMIBI dual-phase dual-isotope scintigraphy in the preoperative localization of hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism: influence of thyroid anomalies. Medicine (Baltimore). 2015;94(41):e1701.  https://doi.org/10.1097/MD.0000000000001701.CrossRefGoogle Scholar
  27. 27.
    Caldarella C, Treglia G, Isgrò MA, Giordano A. Diagnostic performance of positron emission tomography using 11C-methionine in patients with suspected parathyroid adenoma: a meta-analysis. Endocrine. 2013;43:78–83.CrossRefGoogle Scholar
  28. 28.
    Kluijfhout WP, Pasternak JD, Drake FT, Beninato T, Gosnell JE, Shen WT, et al. Use of PET tracers for parathyroid localization: a systematic review and meta-analysis. Langenbecks Arch Surg. 2016;401(7):925–35.CrossRefGoogle Scholar
  29. 29.
    Hundahl SA, Fleming ID, Fremgen AM, Menck HR. Two hundred eighty-six cases of parathyroid carcinoma treated in the U.S. between 1985–1995: a National Cancer Data Base Report. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer. 1999;86:538–44.CrossRefGoogle Scholar
  30. 30.
    Al-Sobhi S, Ashari LH, Ingemansson S. Detection of metastatic parathyroid carcinoma with Tc-99m sestamibi imaging. Clin Nucl Med. 1999;24:21–3.CrossRefGoogle Scholar
  31. 31.
    Santiago Chinchilla A, Ramos Font C, Murosde Fuentes MA, Navarro-Pelayo Láinez M, Palacios Gerona H, et al. False negative of the scintigraphy with 99mTc-sestamibi in parathyroid carcinoma with associated brown tumors. Contributions of the 18F-FDG-PET/CT. Rev Esp Med Nucl. 2011;30:174–9.CrossRefGoogle Scholar
  32. 32.
    Kemps B, van Ufford HQ, Creyghton W, de Haas M, Baarslag HJ, Rinkes IB, et al. Brown tumors simulating metastases on FDG PET in a patient with parathyroid carcinoma. Eur J Nucl Med Mol Imaging. 2008;35:850.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Duccio Volterrani
    • 1
    Email author
  • Federica Guidoccio
    • 1
  • Giuliano Mariani
    • 1
  1. 1.Regional Center of Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and SurgeryUniversity of PisaPisaItaly

Personalised recommendations