Advertisement

Radionuclide Imaging of Cardiovascular Disease

  • Matteo Bauckneht
  • Flavia Ticconi
  • Roberta Piva
  • Riemer H. J. A. Slart
  • Alberto Nieri
  • Silvia Morbelli
  • Paola Anna Erba
  • Cecilia Marini
  • H. William Strauss
  • Gianmario SambucetiEmail author
Chapter

Abstract

Multiple imaging modalities are clinically available for evaluation of global and regional cardiac function, determination of regional myocardial perfusion, and evaluation of coronary anatomy, including SPECT with CT, PET with CT, multi-detector computed tomography (MDCT), magnetic resonance imaging (MRI), and ultrasound. Emblematic of this revolution is the capability of cardiac MDCT to integrate evaluation of coronary artery anatomy with noninvasive assessment of myocardial perfusion and contractile function [1]. MDCT still needs to be technically optimized, particularly to identify small changes in myocardial perfusion, which can be done reproducibly with radionuclide techniques [2]. On the other hand, despite proven clinical efficacy in the detection of CAD (primarily based on the presence of calcium in the coronary arteries), MDCT imaging performs suboptimally in the noninvasive characterization of multivessel CAD. On the other hand, the specificity of nuclear imaging is improved by attenuation correction. Accordingly, multimodality SPECT/CT or PET/CT approach is the current standard for evaluating myocardial perfusion.

Keywords

Coronary artery disease Myocardial blood flow Pathophysiology of coronary circulation Myocardial ischemia Angina Acute myocardial infarction Stress myocardial perfusion imaging Rest myocardial perfusion imaging Exercise stress testing Pharmacologic stress testing Adenosine Regadenoson Dipyridamole Dobutamine 201Tl-chloride 99mTc-sestamibi 99mTc-tetrofosmin SPECT Myocardial viability PET/CT Rubidium-82 82Sr/82Rb generator [15O]Water [13N]Ammonia Infective endocarditis Cardiovascular implantable electronic devices Implantable left ventricular assist devices 99mTc-HMPAO-WBC SPECT/CT [18F]FDG PET/CT Prosthetic valve endocarditis Native valve endocarditis Vascular prosthetic infection Myocarditis Acute pericarditis Cardiac sarcoidosis Cardiac amyloidosis Heart failure 123I-MIBG Heart-to-mediastinum ratio Large vessel vasculitis 

References

  1. 1.
    Rossi A, Uitterdijk A, Dijkshoorn M, Klotz E, Dharampal A, van Straten M, et al. Quantification of myocardial blood flow by adenosine-stress CT perfusion imaging in pigs during various degrees of stenosis correlates well with coronary artery blood flow and fractional flow reserve. Eur Heart J Cardiovasc Imaging. 2013;14(4):331–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Marini C, Seitun S, Zawaideh C, Bauckneht M, Morelli MC, Ameri P, et al. Comparison of coronary flow reserve estimated by dynamic radionuclide SPECT and multi-detector X-ray CT. J Nucl Cardiol. 2017;24:1712–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Libby P, Pasterkamp G. Requiem for the 'vulnerable plaque. Eur Heart J. 2015;36(43):2984–7.PubMedGoogle Scholar
  5. 5.
    Hackett D, Davies G, Maseri A. Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe. Eur Heart J. 1988;9(12):1317–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Sambuceti G, Marini C, Morbelli S, Paoli G, Derchi M, Pomposelli E. Witnessing ischemia or proofing coronary atherosclerosis: two different windows on the same or on different pathways precipitating cardiovascular events? J Nucl Cardiol. 2009;16(3):447–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33(1):87–94.PubMedCrossRefGoogle Scholar
  8. 8.
    Sambuceti G, Marzilli M, Mari A, Marini C, Schluter M, Testa R, et al. Coronary microcirculatory vasoconstriction is heterogeneously distributed in acutely ischemic myocardium. Am J Physiol Heart Circ Physiol. 2005;288(5):H2298–305.PubMedCrossRefGoogle Scholar
  9. 9.
    Saracco A, Bauckneht M, Verna E, Ghiringhelli S, Repetto R, Sambuceti G, Provasoli S, Storace M. A mathematical model for the vessel recruitment in coronary microcirculation in the absence of active autoregulation. Microvasc Res. 2016;104:38–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Sambuceti G, Marzilli M, Fedele S, Marini C, L’Abbate A. Paradoxical increase in microvascular resistance during tachycardia downstream from a severe stenosis in patients with coronary artery disease: reversal by angioplasty. Circulation. 2001;103(19):2352–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Marini C, Acampa W, Bauckneht M, Daniele S, Capitanio S, Cantoni V, et al. Added prognostic value of ischaemic threshold in radionuclide myocardial perfusion imaging: a common-sense integration of exercise tolerance and ischaemia severity. Eur J Nucl Med Mol Imaging. 2015;42(5):750–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Sambuceti G, Giorgetti A, Corsiglia L, Marini C, Schneider-Eicke J, Brunelli C, et al. Perfusion-contraction mismatch during inotropic stimulation in hibernating myocardium. J Nucl Med. 1998;39(3):396–402.PubMedGoogle Scholar
  13. 13.
    Ward RP, Al-Mallah MH, Grossman GB, Hansen CL, Hendel RC, Kerwin TC, et al. American Society of Nuclear Cardiology review of the ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). J Nucl Cardiol. 2007;14(6):e26–38.PubMedCrossRefGoogle Scholar
  14. 14.
    Hesse B, Lindhardt TB, Acampa W, Anagnostopoulos C, Ballinger J, Bax JJ, et al. EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging. 2008;35(4):851–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol. 2009;53(23):2201–29.PubMedCrossRefGoogle Scholar
  16. 16.
    Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging. 2015;42(12):1929–40.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol. 2016;23(3):606–39.PubMedCrossRefGoogle Scholar
  18. 18.
    Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging. 2005;32(7):855–97.PubMedCrossRefGoogle Scholar
  19. 19.
    Taillefer R. Should early post-stress imaging be performed on a routine clinical basis for myocardial perfusion studies? J Nucl Cardiol. 2014;21(6):1177–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Mut F, Giubbini R, Vitola J, Lusa L, Sobic-Saranovic D, Peix A, et al. Detection of post-exercise stunning by early gated SPECT myocardial perfusion imaging: results from the IAEA multi-center study. J Nucl Cardiol. 2014;21(6):1168–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaufmann BA, Pfisterer ME, Viswanathan S, Muller-Brand J, Zellweger MJ. Stunning and left ventricular function--how long is the ventricle knocked out? Left ventricular function correlated with ischemic burden and recovery time after stress. Int J Cardiol. 2006;112(2):223–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Emmett L, Iwanochko RM, Freeman MR, Barolet A, Lee DS, Husain M. Reversible regional wall motion abnormalities on exercise technetium-99m-gated cardiac single photon emission computed tomography predict high-grade angiographic stenoses. J Am Coll Cardiol. 2002;39(6):991–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Johnson LL, Verdesca SA, Aude WY, Xavier RC, Nott LT, Campanella MW, et al. Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms. J Am Coll Cardiol. 1997;30(7):1641–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Heller GV, Mann A, Hendel R. Nuclear cardiology: technical applications. New York: McGraw-Hill; 2009.Google Scholar
  25. 25.
    Yoshinaga K, Klein R, Tamaki N. Generator-produced rubidium-82 positron emission tomography myocardial perfusion imaging-from basic aspects to clinical applications. J Cardiol. 2010;55(2):163–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23(5):1187–226.PubMedCrossRefGoogle Scholar
  27. 27.
    Maddahi J, Packard RR. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med. 2014;44(5):333–43.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC. Clinical myocardial perfusion PET/CT. J Nucl Med. 2007;4:783–93.CrossRefGoogle Scholar
  29. 29.
    Huisman MC, Higuchi T, Reder S, Nekolla SG, Poethko T, Wester HJ, et al. Initial characterization of an 18F-labeled myocardial perfusion tracer. J Nucl Med. 2008;49(4):630–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Yu M, Guaraldi MT, Mistry M, Kagan M, McDonald JL, Drew K, et al. BMS-747158-02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol. 2007;14(6):789–98.PubMedCrossRefGoogle Scholar
  31. 31.
    Nekolla SG, Reder S, Saraste A, Higuchi T, Dzewas G, Preissel A, et al. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation. 2009;119(17):2333–42.PubMedCrossRefGoogle Scholar
  32. 32.
    Sherif HM, Nekolla SG, Saraste A, Reder S, Yu M, Robinson S, et al. Simplified quantification of myocardial flow reserve with flurpiridaz F-18: validation with microspheres in a pig model. J Nucl Med. 2011;52(4):617–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Klein R, deKemp RA. Cardiac PET imaging: principles and new developments. In: Khalil M, editor. Basic science of PET imaging. Cham: Springer; 2017. p. 451–83.CrossRefGoogle Scholar
  34. 34.
    Canepa M, Bezante G, Vianello P, Ameri P, Milaneschi Y, Aste M, et al. Diagnostic value of ischemia severity at myocardial perfusion imaging in elderly persons with suspected coronary disease. J Cardiovasc Med (Hagerstown). 2016;17(10):719–28.CrossRefGoogle Scholar
  35. 35.
    Slomka P, Xu Y, Berman D, Germano G. Quantitative analysis of perfusion studies: strengths and pitfalls. J Nucl Cardiol. 2012;19(2):338–46.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana C. The increasing role of quantification in clinical nuclear cardiology: the Emory approach. J Nucl Cardiol. 2007;14(4):420–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS. Quantitation in gated perfusion SPECT imaging: the cedars-Sinai approach. J Nucl Cardiol. 2007;14(4):433–54.PubMedCrossRefGoogle Scholar
  38. 38.
    Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol. 2007;14(4):455–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Liu YH. Quantification of nuclear cardiac images: the Yale approach. J Nucl Cardiol. 2007;14(4):483–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Rossen JD, Quillen JE, Lopez AG, Stenberg RG, Talman CL, Winniford MD. Comparison of coronary vasodilation with intravenous dipyridamole and adenosine. J Am Coll Cardiol. 1991;18(2):485–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Mekkaoui C, Jadbabaie F, Dione DP, Meoli DF, Purushothaman K, Belardinelli L, et al. Effects of adenosine and a selective A2A adenosine receptor agonist on hemodynamic and thallium-201 and technetium-99m-sestaMIBI biodistribution and kinetics. JACC Cardiovasc Imaging. 2009;2(10):1198–208.PubMedCrossRefGoogle Scholar
  42. 42.
    Bauckneht M, Piva R, Ferrarazzo G, Ceriani V, Buschiazzo A, Morbelli S, et al. Non-invasive measurement of coronary flow reserve: uniqueness of radionuclide methods and alternative techniques. Q J Nucl Med Mol Imaging. 2016;60(4):324–37.PubMedGoogle Scholar
  43. 43.
    Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol. 2007;49(10):1052–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med. 2007;48(3):349–58.PubMedGoogle Scholar
  45. 45.
    Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122(6):603–13.PubMedCrossRefGoogle Scholar
  46. 46.
    Johnson NP, Gould KL. Physiological basis for angina and ST-segment change PET-verified thresholds of quantitative stress myocardial perfusion and coronary flow reserve. JACC Cardiovasc Imaging. 2011;4(9):990–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Packard RR, Huang SC, Dahlbom M, Czernin J, Maddahi J. Absolute quantitation of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F-18 PET. J Nucl Med. 2014;55(9):1438–44.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ko SM, Hwang HK, Kim SM, Cho IH. Multi-modality imaging for the assessment of myocardial perfusion with emphasis on stress perfusion CT and MR imaging. Int J Cardiovasc Imaging. 2015;31(Suppl 1):1–21.PubMedCrossRefGoogle Scholar
  49. 49.
    Alexanderson-Rosas E, Guinto-Nishimura GY, Cruz-Mendoza JR, Oropeza-Aguilar M, De La Fuente-Mancera JC, Barrero-Mier AF, et al. Current and future trends in multimodality imaging of coronary artery disease. Expert Rev Cardiovasc Ther. 2015;13(6):715–31.PubMedCrossRefGoogle Scholar
  50. 50.
    Osler W. The Gulstonian lectures, on malignant endocarditis. Br Med J. 1885;1(1264):577–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Thuny F, Giorgi R, Habachi R, Ansaldi S, Le Dolley Y, Casalta JP, et al. Excess mortality and morbidity in patients surviving infective endocarditis. Am Heart J. 2012;164(1):94–101.PubMedCrossRefGoogle Scholar
  52. 52.
    Gelijns AC, Moskowitz AJ, Acker MA, et al. Management practices and major infections after cardiac surgery. J Am Coll Cardiol. 2014;64:372–81.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7:277–81.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    von Eiff C, Jansen B, Kohnen W, Becker K. Infections associated with medical devices. Drugs. 2005;65:179–214.CrossRefGoogle Scholar
  55. 55.
    Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435–86.PubMedCrossRefGoogle Scholar
  56. 56.
    Jensen AG, Wachmann CH, Poulsen KB, Espersen F, Scheibel J, Skinhøj P, et al. Risk factors for hospital-acquired Staphylococcus aureus bacteremia. Arch Intern Med. 1999;159(13):1437–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Jensen AG, Wachmann CH, Espersen F, et al. Treatment and outcome of Staphylococcus aureus bacteremia: a prospective study of 278 cases. Arch Intern Med. 2002;162:25–32.PubMedCrossRefGoogle Scholar
  58. 58.
    Perez de Isla L, Zamorano J, Lennie V, et al. Negative blood culture infective endocarditis in the elderly: long-term follow-up. Gerontology. 2007;53:245–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Li JS, Sexton DJ, Mick N, Nettles R, Fowler VG Jr, Ryan T, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis. 2000;30(4):633–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. 2015 ESC guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075–128.PubMedCrossRefGoogle Scholar
  61. 61.
    Neelankavil JP, Thompson A, Mahajan A. Managing cardiovascular implantable devices during perioperative care. The Anesthesia Patient Safety Foundation [Internet]. 2013. Available from: https://www.apsf.org/newsletters/html/2013/fall/01_cieds.htm.
  62. 62.
    Podoleanu C, Deharo JC. Management of cardiac implantable electronic device infection. Arrhythm Electrophysiol Rev. 2014;3:184–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Voigt A, Shalaby A, Saba S. Rising rates of cardiac rhythm management device infections in the United States: 1996 through 2003. J Am Coll Cardiol. 2006;48:590–1.PubMedCrossRefGoogle Scholar
  64. 64.
    Margey R, McCann H, Blake G, et al. Contemporary management of and outcomes from cardiac device related infections. Europace. 2010;12:64–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Camus C, Leport C, Raffi F, et al. Sustained bacteremia in 26 patients with a permanent endocardial pacemaker: assessment of wire removal. Clin Infect Dis. 1993;17:46–55.PubMedCrossRefGoogle Scholar
  66. 66.
    Tarakji KG, Chan EJ, Cantillon DJ, et al. Cardiovascular implantable electronic device infections: presentation, management, and patient outcomes. Heart Rhythm. 2010;7:1043–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Holman WL, Naftel DC, Eckert CE, et al. Durability of left ventricular assist devices: interagency registry for mechanically assisted circulatory support (INTERMACS). J Thorac Cardiovasc Surg. 2006–2011;2013(146):437–41.Google Scholar
  68. 68.
    Xie A, Phan K, Yan TD. Durability of continuous-flow left ventricular assist devices: a systematic review. Ann Cardiothorac Surg. 2014;3:547–56.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Wickline SA, Fischer KC. Can infections be imaged in implanted devices? ASAIO J. 2000;46:80–1.CrossRefGoogle Scholar
  70. 70.
    Siméon S, Flécher E, Revest M, et al. Left ventricular assist device-related infections: a multicentric study. Clin Microbiol Infect. 2017;23:748–51.PubMedCrossRefGoogle Scholar
  71. 71.
    Koval CE, Rakita R. AST Infectious Disease Community of Practice Ventricular assist device related infections and solid organ transplantation. Am J Transplant. 2013;13:348–54.PubMedCrossRefGoogle Scholar
  72. 72.
    Erba PA, Conti U, Lazzeri E, et al. Added value of 99mTc-HMPAO-labeled leukocyte SPECT/CT in the characterization and management of patients with infectious endocarditis. J Nucl Med. 2012;53:1235–43.PubMedCrossRefGoogle Scholar
  73. 73.
    Erba PA, Lancellotti P, Vilacosta I, et al. Recommendation on nuclear and multi-modality imaging in IE and CIED infections. Eur J Nucl Med Mol Imaging. 2018;45(10):1795–815.PubMedCrossRefGoogle Scholar
  74. 74.
    Rouzet F, Chequer R, Benali K, et al. Respective performance of 18F-FDG PET and radiolabeled leucocyte scintigraphy for the diagnosis of prosthetic valve endocarditis. J Nucl Med. 2014;55:1980–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Scholtens AM, Verberne HJ, Budde RP, Lam MG. Additional heparin preadministration improves cardiac glucose metabolism suppression over low-carbohydrate diet alone in 18F-FDG PET imaging. J Nucl Med. 2016;57(4):568–73.PubMedCrossRefGoogle Scholar
  76. 76.
    Dilsizian V. Transition from SPECT to PET myocardial perfusion imaging: a desirable change in nuclear cardiology to approach perfection. J Nucl Cardiol. 2016;23(3):337–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–58.PubMedCrossRefGoogle Scholar
  78. 78.
    Jimenez-Ballve A, Perez-Castejon MJ, Delgado-Bolton RC, Sanchez-Enrique C, Vilacosta I, Vivas D, et al. Assessment of the diagnostic accuracy of 18F-FDG PET/CT in prosthetic infective endocarditis and cardiac implantable electronic device infection: comparison of different interpretation criteria. Eur J Nucl Med Mol Imaging. 2016;43(13):2401–12.PubMedCrossRefGoogle Scholar
  79. 79.
    Hyafil F, Rouzet F, Lepage L, et al. Role of radiolabelled leucocyte scintigraphy in patients with a suspicion of prosthetic valve endocarditis and inconclusive echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14:586–94.PubMedCrossRefGoogle Scholar
  80. 80.
    Gomes A, Glaudemans AW, Touw DJ, et al. Diagnostic value of imaging in infective endocarditis: a systematic review. Lancet Infect Dis. 2017;17:e1–e14.PubMedCrossRefGoogle Scholar
  81. 81.
    Saby L, Laas O, Habib G, et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J Am Coll Cardiol. 2013;61:2374–82.PubMedCrossRefGoogle Scholar
  82. 82.
    Pizzi MN, Roque A, Fernández-Hidalgo N, et al. Improving the diagnosis of infective endocarditis in prosthetic valves and Intracardiac devices with 18F-Fluordeoxyglucose positron emission tomography/ computed tomography angiography: initial results at an infective endocarditis referral center. Circulation. 2015;132:1113–26.PubMedCrossRefGoogle Scholar
  83. 83.
    Vilacosta I, Graupner C, San Roman JA, et al. Risk of embolization after institution of antibiotic therapy for infective endocarditis. J Am Coll Cardiol. 2002;39:1489–95.PubMedCrossRefGoogle Scholar
  84. 84.
    Dell’Aquila AM, Mastrobuoni S, Alles S, et al. Contributory role of fluorine 18-Fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis and clinical Management of Infections in patients supported with a continuous-flow left ventricular assist device. Ann Thorac Surg. 2016;101:87–94.PubMedCrossRefGoogle Scholar
  85. 85.
    Avramovic N, Dell’Aquila AM, Weckesser M, et al. Metabolic volume performs better than SUVmax in the detection of left ventricular assist device driveline infection. Eur J Nucl Med Mol Imaging. 2017;44:1870–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Di Salvo G, Habib G, Pergola V, et al. Echocardiography predicts embolic events in infective endocarditis. J Am Coll Cardiol. 2001;37:1069–107.PubMedCrossRefGoogle Scholar
  87. 87.
    Juneau D, Golfam M, Hazra S, Zuckier LS, Garas S, Redpath C, Bernick J, et al. Positron emission tomography and single-photon emission computed tomography imaging in the diagnosis of cardiac implantable electronic device infection: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2017;10(4). pii: e005772.  https://doi.org/10.1161/CIRCIMAGING.116.005772.
  88. 88.
    Vos FJ, Bleeker-Rovers CP, Sturm PD, et al. 18F-FDG PET/CT for detection of metastatic infection in gram-positive bacteremia. J Nucl Med. 2010;51:1234–40.PubMedCrossRefGoogle Scholar
  89. 89.
    Orvin K, Goldberg E, Bernstine H, et al. The role of FDG-PET/CT imaging in early detection of extra-cardiac complications of infective endocarditis. Clin Microbiol Infect. 2015;21:69–76.PubMedCrossRefGoogle Scholar
  90. 90.
    Kestler M, Munoz P, Rodriguez-Creixems M, et al. Role of 18F-FDG PET in patients with infectious endocarditis. J Nucl Med. 2014;55:1093–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Ozcan C, Asmar A, Ggill S, et al. The value of FDG-PET/CT in the diagnostic work-up of extracardiac infectious manifestations in infectious endocarditis. Int J Cardiovasc Imaging. 2013;29:1629–37.PubMedCrossRefGoogle Scholar
  92. 92.
    Delahaye F, M’Hammedi A, Guerpillon B, et al. Systematic search for present and potential portals of entry for infective endocarditis. J Am Coll Cardiol. 2016;67:151–8.PubMedCrossRefGoogle Scholar
  93. 93.
    McCoy CW, Mason JM. Enterococcal endocarditis associated with carcinoma of the sigmoid; report of a case. J Med Assoc State Ala. 1951;21:162–6.PubMedGoogle Scholar
  94. 94.
    Berger P, Vaartjes I, Moll FL, et al. Cumulative incidence of graft infection after primary prosthetic aortic reconstruction in the endovascular era. Eur J Vasc Endovasc Surg. 2015;49:581–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Hicks RC, Greenhalgh RM. The pathogenesis of vascular graft infection. Eur J Vasc Endovasc Surg. 1997;14:5–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Kilic A, Arnaoutakis DJ, Reifsnyder T, Black JH III, et al. Management of infected vascular grafts. Vasc Med. 2016;21:53–60.PubMedCrossRefGoogle Scholar
  97. 97.
    Low RN, Wall SD, Jeffrey RB Jr, et al. Aortoenteric fistula and perigraft infection: evaluation with CT. Radiology. 1999;175:157–62.CrossRefGoogle Scholar
  98. 98.
    Orton DF, LeVeen RF, Saigh JA, et al. Aortic prosthetic graft infections: radiologic manifestations and implications for management. Radiographics. 2000;20:977–93.PubMedCrossRefGoogle Scholar
  99. 99.
    Liberatore M, Misuraca M, Calandri E, et al. White blood cell scintigraphy in the diagnosis of infection of endovascular prostheses within the first month after implantation. Med Sci Monit. 2006;12:5–9.Google Scholar
  100. 100.
    Erba PA, Leo G, Sollini M, et al. Radiolabelled leucocyte scintigraphy versus conventional radiological imaging for the management of late, low-grade vascular prosthesis infections. Eur J Nucl Med Mol Imaging. 2014;41:357–68.PubMedCrossRefGoogle Scholar
  101. 101.
    Spacek M, Belohlavek O, Votrubova J, Sebesta P, Stadler P. Diagnostics of “non-acute” vascular prosthesis infection using 18F-FDG PET/CT: our experience with 96 prostheses. Eur J Nucl Med Mol Imaging. 2009;36:850–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Saleem BR, Beukinga RJ, Boellaard R, et al. Textural features of 18F-fluorodeoxyglucose positron emission tomography scanning in diagnosing aortic prosthetic graft infection. Eur J Nucl Med Mol Imaging. 2017;44:886–94.PubMedCrossRefGoogle Scholar
  103. 103.
    Tossios P, Karatzopoulos A, Tsagakis K, et al. Successful surgical in situ treatment of prosthetic graft infection by staged procedure after Bentall operation and total aortic arch replacement. Springerplus. 2014;3:172.  https://doi.org/10.1186/2193-1801-3-172.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Legout L, D’Elia PV, Sarraz-Bournet, et al. Diagnosis and management of prosthetic vascular graft infections. Méd Mal Infect. 2012;42:102–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Hargrove WC III, Edmunds LH Jr. Management of infected thoracic aortic prosthetic grafts. Ann Thorac Surg. 1984;37:72–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Takano T, Terasaki T, Wada Y, et al. Treatment of prosthetic graft infection after thoracic aorta replacement. Ann Thorac Cardiovasc Surg. 2014;20:304–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Aretz HT, Billingham ME, Edwards WD, et al. Myocarditis: a histopathologic definition and classification. Am J Cardiovasc Pathol. 1987;1:3–14.PubMedGoogle Scholar
  108. 108.
    Lieberman EB, Hutchins GM, Herskowitz A, et al. Clinico-pathologic description of myocarditis. J Am Coll Cardiol. 1991;18:1617–26.PubMedCrossRefGoogle Scholar
  109. 109.
    Magnani JW, Dec GW. Myocarditis: current trends in diagnosis and treatment. Circulation. 2006;113:876–90.PubMedCrossRefGoogle Scholar
  110. 110.
    Laissy JP, Hyafil F, Feldman LJ, et al. Differentiating acute myocardial infarction from myocarditis: diagnostic value of early- and delayed-perfusion cardiac MR imaging. Radiology. 2005;237:75–82.PubMedCrossRefGoogle Scholar
  111. 111.
    Takano H, Nakagawa K, Ishio N, et al. Active myocarditis in a patient with chronic active Epstein–Barr virus infection. Int J Cardiol. 2008;130:e11–3.PubMedCrossRefGoogle Scholar
  112. 112.
    Oikawa M, Kagaya Y, Otani H, et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol. 2005;45:1849–55.PubMedCrossRefGoogle Scholar
  113. 113.
    O’Leary SM, Williams PL, Williams MP, et al. Imaging the pericardium: appearances on ECG-gated 64-detector row cardiac computed tomography. Br J Radiol. 2010;83:194–205.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Wang ZJ, Reddy GP, Gotway MB, et al. CT and MR imaging of pericardial disease. Radiographics. 2003;23(Spec No):S167–80.PubMedCrossRefGoogle Scholar
  115. 115.
    Alter P, Figiel JH, Rupp TP, et al. MR, CT, and PET imaging in pericardial disease. Heart Fail Rev. 2013;18:289–306.PubMedCrossRefGoogle Scholar
  116. 116.
    Dong A, Dong H, Wang Y, et al. 18F-FDG PET/CT in differentiating acute tuberculous from idiopathic pericarditis: preliminary study. Clin Nucl Med. 2013;38:e160–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Couturier B, Huyge V, Soyfoo MS. Pericarditis revealing large vessel vasculitis. ISRN Rheumatol. 2011;2011:648703.  https://doi.org/10.5402/2011/648703.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Birnie DH, Sauer WH, Bogum F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11:1304–23.CrossRefGoogle Scholar
  119. 119.
    Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. Eur Heart J. 2007;28(24):3076–93.PubMedCrossRefGoogle Scholar
  120. 120.
    Simonen P, Lehtonen J, Kandolin R, Schildt J, Marjasuo S, Miettinen H, et al. F-18-fluorodeoxyglucose positron emission tomography-guided sampling of mediastinal lymph nodes in the diagnosis of cardiac sarcoidosis. Am J Cardiol. 2015;116(10):1581–5.PubMedCrossRefGoogle Scholar
  121. 121.
    Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63(4):329–36.PubMedCrossRefGoogle Scholar
  122. 122.
    Tang R, Wang JT, Wang L, Le K, Huang Y, Hickey AJ, Emmett L. Impact of patient preparation on the diagnostic performance of 18F-FDG PET in cardiac sarcoidosis: a systematic review and meta-analysis. Clin Nucl Med. 2016;41:e327–39.PubMedCrossRefGoogle Scholar
  123. 123.
    Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53(2):241–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Schneider S, Batrice A, Rischpler C, Eiber M, Ibrahim T, Nekolla SG. Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J. 2014;35(5):312.PubMedCrossRefGoogle Scholar
  125. 125.
    Ruberg FL, Appelbaum E, Davidoff R, Ozonoff A, Kissinger KV, Harrigan C, et al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am J Cardiol. 2009;103(4):544–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46(6):1076–84.PubMedCrossRefGoogle Scholar
  127. 127.
    Trivieri MG, Dweck MR, Abgral R, Robson PM, Karakatsanis NA, Lala A, et al. 18F-sodium fluoride PET/MR for the assessment of cardiac amyloidosis. J Am Coll Cardiol. 2016;68(24):2712–4.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjo L, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med. 2013;54(2):213–20.PubMedCrossRefGoogle Scholar
  129. 129.
    Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR Jr, Di Carli MF, et al. Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging. 2014;41(9):1652–62.PubMedCrossRefGoogle Scholar
  130. 130.
    Law WP, Wang WY, Moore PT, Mollee PN, Ng AC. Cardiac amyloid imaging with 18F-Florbetaben PET: a pilot study. J Nucl Med. 2016;57(11):1733–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Capitanio S, Marini C, Bauckneht M, Sambuceti G. Nuclear cardiology in heart failure. Curr Cardiovasc Imaging Rep. 2014;7(3):9256.CrossRefGoogle Scholar
  132. 132.
    Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32(7):375–410.PubMedCrossRefGoogle Scholar
  133. 133.
    Bauckneht M, Sambuceti G, Pomposelli E, Fiz F, Marini C. Pathophysiological basis of myocardial innervation imaging in heart failure. Clin Transl Imaging. 2015;3(5):347–55.CrossRefGoogle Scholar
  134. 134.
    Verberne HJ, Feenstra C, de Jong WM, Somsen GA, van Eck-Smit BL, Busemann Sokole E. Influence of collimator choice and simulated clinical conditions on 123I-MIBG heart/mediastinum ratios: a phantom study. Eur J Nucl Med Mol Imaging. 2005;32(9):1100–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Verschure DO, de Wit TC, Bongers V, Hagen PJ, Sonneck-Koenne C, D’Aron J, et al. 123I-MIBG heart-to-mediastinum ratio is influenced by high-energy photon penetration of collimator septa from liver and lung activity. Nucl Med Commun. 2015;36(3):279–85.PubMedCrossRefGoogle Scholar
  136. 136.
    Veltman CE, Boogers MJ, Meinardi JE, Al Younis I, Dibbets-Schneider P, Van der Wall EE, et al. Reproducibility of planar 123I-meta-iodobenzylguanidine (MIBG) myocardial scintigraphy in patients with heart failure. Eur J Nucl Med Mol Imaging. 2012;39(10):1599–608.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Klene C, Jungen C, Okuda K, Kobayashi Y, Helberg A, Mester J, et al. Influence of ROI definition on the heart-to-mediastinum ratio in planar 123I-MIBG imaging. J Nucl Cardiol. 2018;25(1):208–16.PubMedCrossRefGoogle Scholar
  138. 138.
    Okuda K, Nakajima K, Hosoya T, Ishikawa T, Konishi T, Matsubara K, et al. Semi-automated algorithm for calculating heart-to-mediastinum ratio in cardiac Iodine-123 MIBG imaging. J Nucl Cardiol. 2011;18(1):82–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55(20):2212–21.PubMedCrossRefGoogle Scholar
  140. 140.
    Puppo C, Massollo M, Paparo F, Camellino D, Piccardo A, Shoushtari Zadeh Naseri M, et al. Giant cell arteritis: a systematic review of the qualitative and semiquantitative methods to assess vasculitis with 18F-fluorodeoxyglucose positron emission tomography. Biomed Res Int. 2014;2014:574248.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Hooisma GA, Balink H, Houtman PM, Slart RH, Lensen KD. Parameters related to a positive test result for FDG PET(/CT) for large vessel vasculitis: a multicenter retrospective study. Clin Rheumatol. 2012;31(5):861–71.PubMedCrossRefGoogle Scholar
  142. 142.
    Moosig F, Czech N, Mehl C, Henze E, Zeuner RA, Kneba M, et al. Correlation between 18-fluorodeoxyglucose accumulation in large vessels and serological markers of inflammation in polymyalgia rheumatica: a quantitative PET study. Ann Rheum Dis. 2004;63(7):870–3.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Matteo Bauckneht
    • 1
  • Flavia Ticconi
    • 2
  • Roberta Piva
    • 2
  • Riemer H. J. A. Slart
    • 3
  • Alberto Nieri
    • 2
  • Silvia Morbelli
    • 1
    • 2
  • Paola Anna Erba
    • 4
  • Cecilia Marini
    • 2
    • 5
  • H. William Strauss
    • 6
  • Gianmario Sambuceti
    • 1
    • 2
    Email author
  1. 1.Nuclear MedicineIRCCS Policlinico San MartinoGenoaItaly
  2. 2.Nuclear Medicine, Department of Health SciencesUniversity of GenoaGenoaItaly
  3. 3.Biomedical Photonic Imaging GroupUniversity of TwenteEnschedeThe Netherlands
  4. 4.Regional Center of Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
  5. 5.CNR Institute of Bioimages and Molecular PhysiologyMilanItaly
  6. 6.Molecular Imaging and Therapy ServiceMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations