Radionuclide Imaging for Non-tumor Diseases of the Brain



The central nervous system (CNS) is formed by the brain and the spinal cord. Both structures are composed of gray substance (neurons) and white substance (nerve fibers).


Non-tumor diseases of the brain Dementias Movement disorders Epilepsy 18F-DOPA [18F]FDG PET/CT 123I-FP-CIT β-Amyloid PET 99mTc-hexamethylpropylenamine (99mTc-HMPAO) 99mTc-ethylcysteinate dimmer (99mTc-ECD) Brain death imaging CSF imaging Cisternography Communicating hydrocephalus 111In-DTPA 


  1. 1.
    Salloway S. Clinical and pathological examples of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia. Med Health R I. 2012;95:207–9.PubMedGoogle Scholar
  2. 2.
    Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al. Mild cognitive impairment. Lancet. 2006;367:1262–70.CrossRefGoogle Scholar
  3. 3.
    Laforce R Jr, Rabinovici GD. Amyloid imaging in the differential diagnosis of dementia: review and potential clinical applications. Alzheimers Res Ther. 2011;3:31. Scholar
  4. 4.
    Silverman DH, Small GW, Phelps ME. Clinical value of neuroimaging in the diagnosis of dementia. Sensitivity and specificity of regional cerebral metabolic and other parameters for early identification of Alzheimer’s disease. Clin Positron Imaging. 1999;2:119–30.CrossRefGoogle Scholar
  5. 5.
    Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain. 2007;130:2616–35.CrossRefGoogle Scholar
  6. 6.
    Ishii K, Soma T, Kono AK, Sofue K, Miyamoto N, Yoshikawa T, et al. Comparison of regional brain volume and glucose metabolism between patients with mild dementia with Lewy bodies and those with mild Alzheimer’s disease. J Nucl Med. 2007;48:704–11.CrossRefGoogle Scholar
  7. 7.
    Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med Technol. 2013;41:11–8.CrossRefGoogle Scholar
  8. 8.
    Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement. 2013;9:e106–9.CrossRefGoogle Scholar
  9. 9.
    Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77:2034–42.CrossRefGoogle Scholar
  10. 10.
    Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.CrossRefGoogle Scholar
  11. 11.
    Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.CrossRefGoogle Scholar
  12. 12.
    Pontecorvo MJ, Mintun MA. PET amyloid imaging as a tool for early diagnosis and identifying patients at risk for progression to Alzheimer’s disease. Alzheimers Res Ther. 2012;3:11. Scholar
  13. 13.
    Förster S, Yousefi BH, Wester HJ, Klupp E, Rominger A, Forstl H, et al. Quantitative longitudinal interrelationships between brain metabolism and amyloid deposition during a 2-year follow-up in patients with early Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012;39:1927–36.CrossRefGoogle Scholar
  14. 14.
    Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin Transl Imaging. 2013;1:217–33.CrossRefGoogle Scholar
  15. 15.
    Shimada H, Shinotoh H, Hirano S, Miyoshi M, Sato K, Tanaka N, et al. Beta-amyloid in Lewy body disease is related to Alzheimer’s disease-like atrophy. Mov Disord. 2013;28:169–75.CrossRefGoogle Scholar
  16. 16.
    Fujishiro H, Iseki E, Higashi S, Kasanuki K, Murayama N, Togo T, et al. Distribution of cerebral amyloid deposition and its relevance to clinical phenotype in Lewy body dementia. Neurosci Lett. 2010;486:19–23.CrossRefGoogle Scholar
  17. 17.
    Catafau AM. Brain SPECT in clinical practice. Part I: Perfusion. J Nucl Med. 2001;42:259–71.PubMedGoogle Scholar
  18. 18.
    Herholz K, Schopphoff H, Schmidt M, Mielke R, Eschner W, Scheidhauer K, et al. Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. J Nucl Med. 2002;43:21–6.PubMedGoogle Scholar
  19. 19.
    Asenbaum S, Pirker W, Angelberger P, Bencsits G, Pruckmayer M, Brücke T. [123I]beta-CIT and SPECT in essential tremor and Parkinson’s disease. J Neural Transm. 1998;105:1213–28.CrossRefGoogle Scholar
  20. 20.
    Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15:503–10.PubMedGoogle Scholar
  21. 21.
    Brooks DJ. Imaging approaches to Parkinson disease. J Nucl Med. 2010;51:596–609.PubMedGoogle Scholar
  22. 22.
    Jokinen P, Helenius H, Rauhala E, Bruck A, Eskola O, Rinne JO. Simple ratio analysis of 18F-fluorodopa uptake in striatal subregions separates patients with early Parkinson disease from healthy controls. J Nucl Med. 2009;50:893–9.PubMedGoogle Scholar
  23. 23.
    Ishikawa T, Dhawan V, Chaly T, Margouleff C, Robeson W, Dahl JR, et al. Clinical significance of striatal DOPA decarboxylase activity in Parkinson’s disease. J Nucl Med. 1996;37:216–22.PubMedGoogle Scholar
  24. 24.
    Van Laere K, Clerinx K, D’Hondt E, de GT, Vandenberghe W. Combined striatal binding and cerebral influx analysis of dynamic 11C-raclopride PET improves early differentiation between multiple-system atrophy and Parkinson disease. J Nucl Med. 2010;51:588–95.CrossRefGoogle Scholar
  25. 25.
    Orimo S, Amino T, Itoh Y, Takahashi A, Kojo T, Uchihara T, et al. Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease. Acta Neuropathol. 2005;109:583–8.CrossRefGoogle Scholar
  26. 26.
    Courbon F, Brefel-Courbon C, Thalamas C, Alibelli MJ, Berry I, Montastruc JL, et al. Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson’s disease. Mov Disord. 2003;18:890–7.CrossRefGoogle Scholar
  27. 27.
    Appelt EA, Song WS, Phillips WT, Metter DF, Salman UA, et al. The “hot nose” sign on brain death scintigraphy: where does the flow really go? Clin Nucl Med. 2008;33:55–7.CrossRefGoogle Scholar
  28. 28.
    Donohoe KJ, Agrawal G, Frey KA, Gerbaudo VH, Mariani G, et al. SNM practice guideline for brain death scintigraphy 2.0. J Nucl Med Technol. 2012;40:198–203.CrossRefGoogle Scholar
  29. 29.
    Khan SH, Rather TA. Detection of spontaneous CSF rhinorrhea in an obese diabetic woman by Tc-99m DTPA cisternography: a case report. World J Nucl Med. 2009;8:182–3.Google Scholar
  30. 30.
    Thut DP, Kreychman A, Obando JA. 111In-DTPA cisternography with SPECT/CT for the evaluation of normal pressure hydrocephalus. J Nucl Med Technol. 2014;42:70–4.CrossRefGoogle Scholar
  31. 31.
    Adler JA, Lotz NM. Intrathecal pain management: a team-based approach. J Pain Res. 2017;10:2565–75.CrossRefGoogle Scholar
  32. 32.
    Cohen-Pfeffer JL, Gururangan S, Lester T, Lim DA, Shaywitz AJ, Westphal M, et al. Intracerebroventricular delivery as a safe, long-term route of drug administration. Pediatr Neurol. 2017;67:23–35.CrossRefGoogle Scholar
  33. 33.
    Hamad M, Holland R, Kamal N, Luceri R, Mammis A. Potential for intrathecal Baclofen in treatment of essential tremor. World Neurosurg. 2017;105:170–5.CrossRefGoogle Scholar
  34. 34.
    Lee YC, Hsieh CC, Chuang JP, Li CY. The necessity of intrathecal chemotherapy for the treatment of breast cancer patients with leptomeningeal metastasis: a systematic review and pooled analysis. Curr Probl Cancer. 2017;41:355–70.CrossRefGoogle Scholar
  35. 35.
    Olmos-Jiménez R, Espuny-Miró A, Cárceles Rodríguez C, Díaz-Carrasco MS. Practical aspects of the use of intrathecal chemotherapy. Farm Hosp. 2017;41:105–29.PubMedGoogle Scholar
  36. 36.
    Woolf SM, Baum CR. Baclofen pumps: uses and complications. Pediatr Emerg Care. 2017;33:271–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Regional Center of Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
  2. 2.Nuclear Medicine Department“S. Andrea” HospitalLa SpeziaItaly

Personalised recommendations