Eisenstein Cohomology for \(\mathrm{Sl}_2({\mathbb Z}[i])\) and Special Values of L-Functions

  • Günter HarderEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 245)


In this note we discuss a special case of a general theme: How do special values of L-functions influence the structure of the cohomology of arithmetic groups?


Cohomology of arithmetic groups Eisenstein cohomology Algebraic Hecke characters Special values 


  1. 1.
    Damerell, R.M.: L-functions of elliptic curves with complex multiplication I. Acta Arith. 17, 287–301 (1970)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Damerell, R.M.: L-functions of elliptic curves with complex multiplication II. Acta Arith. 19, 311–317 (1971)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Harder, G.: Period integrals of cohomology classes which are represented by Eisenstein series. In: Proceedings of the Bombay Colloquium. Springer, Berlin (1979)Google Scholar
  4. 4.
    Harder, G.: Eisenstein cohomology of arithmetic groups. The case \({{\rm GL}}_2\). Invent. Math. 89(1), 37–118 (1987)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Harder, G.: A congruence between a Siegel and an elliptic modular form. The 1-2-3 of Modular Forms. Springer, Berlin (Unitext)Google Scholar
  6. 6.
    Harder, G.: Cohomology of arithmetic groups. Book in preparation. Preliminary version available at
  7. 7.
    Harder, G.- Raghuram, A.: Eisenstein cohomology for \({\rm GL}_N\) and ratios of critical values of Rankin–Selberg \(L\) -functions (submitted)Google Scholar
  8. 8.
    Hurwitz, A.: Ueber die Entwickelungs coefficienten der lemniscatischen Functionen. Math. Ann. 51(2), 196–226 (1898)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kasten, H., Schmidt, C.-G.: The critical values of Rankin–Selberg convolutions. Int. J. Number Theory 9(1), 205–256 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kazhdan, D., Mazur, B., Schmidt, C.-G.: Relative modular symbols and Rankin–Selberg convolutions. J. Reine Angew. Math. 2000(519), 97–141 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    König, H.: Eisenstein-Kohomologie von\(_2([i])\). Dissertation, Bonner Mathematische Schriften Nr. 222 (1991)Google Scholar
  12. 12.
    Rubin, K.: Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. Invent. Math. 89(3), 527–559 (1987)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sengün, M.-H.: On the Integral cohomology of bianchi groups. Exp. Math. 20(4), 487–505 (2011). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck Institut für MathematikBonnGermany
  2. 2.Universität Bonn Mathematisches Institut EndenicherBonnGermany

Personalised recommendations