Advertisement

Eisenstein Cohomology and Automorphic L-Functions

  • Neven GrbacEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 245)

Abstract

During the past ten years of the most inspiring and very fruitful collaboration with Joachim Schwermer, we have carefully studied the non-vanishing conditions for certain summands in the decomposition along the cuspidal support of the (square-integrable) Eisenstein cohomology of a reductive group over a totally real number field. These conditions form a subtle combination of geometric conditions, arising from cohomological considerations, and arithmetic conditions, arising from the analytic properties of Eisenstein series and given in terms of automorphic L-functions. This paper is a survey of the most important results of our long-lasting collaboration.

Keywords

Automorphic cohomology Eisenstein cohomology Square-integrable cohomology Automorphic forms Eisenstein series Automorphic L-functions Non-vanishing conditions Franke filtration 

2010 Mathematics Subject Classification

Primary 11F75 Secondary 11F70 22E40 22E55 11F67 

References

  1. 1.
    Li, J.-S., Schwermer, J.: Automorphic representations and cohomology of arithmetic groups. In: Challenges for the 21st century (Singapore, 2000), pp. 102–137. World Scientific Publishing, River Edge, NJ (2001)Google Scholar
  2. 2.
    Schwermer, J.: The cohomological approach to cuspidal automorphic representations. Automorphic Forms and \(L\)-Functions I. Global Aspects. Contemporary Mathematics, vol. 488, pp. 257–285. American Mathematical Society, Providence (2009)Google Scholar
  3. 3.
    Schwermer, J.: Geometric cycles, arithmetic groups and their cohomology. Bull. Am. Math. Soc. (N.S.) 47(2), 187–279 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Mœglin, C., Waldspurger, J.-L.: Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Mathematics, vol. 113. Cambridge University Press, Cambridge (1995)Google Scholar
  5. 5.
    Borel, A., Jacquet, H.: Automorphic Forms and Automorphic Representations. In: Automorphic forms, representations and \(L\)-functions, Proceedings of Symposia Pure Mathematics, XXXIII, Part 1, pp. 189–202. American Mathematical Society, Providence (1979)Google Scholar
  6. 6.
    Borel, A.: Regularization theorems in Lie algebra cohomology. Applications. Duke Math. J. 50(3), 605–623 (1983)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Borel, A., Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Mathematical Surveys and Monographs, vol. 67, 2nd edn. American Mathematical Society, Providence (2000)Google Scholar
  8. 8.
    Franke, J.: Harmonic analysis in weighted \(L_2\)-spaces. Ann. Sci. École Norm. Super. (4) 31(2), 181–279 (1998)Google Scholar
  9. 9.
    Franke, J., Schwermer, J.: A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups. Math. Ann. 311(4), 765–790 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Langlands, R.P.: On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Mathematics, vol. 544. Springer, Berlin (1976)CrossRefGoogle Scholar
  11. 11.
    Li, J.-S., Schwermer, J.: On the Eisenstein cohomology of arithmetic groups. Duke Math. J. 123(1), 141–169 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Schwermer, J.: Kohomologie Arithmetisch Definierter Gruppen und Eisensteinreihen. Lecture Notes in Mathematics, vol. 988. Springer, Berlin (1983)CrossRefGoogle Scholar
  13. 13.
    Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math. 74(2), 329–387 (1961)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Borel, A., Casselman, W.: \(L_{2}\)-cohomology of locally symmetric manifolds of finite volume. Duke Math. J. 50(3), 625–647 (1983)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Vogan Jr., D.A., Zuckerman, G.J.: Unitary representations with nonzero cohomology. Compos. Math. 53(1), 51–90 (1984)Google Scholar
  16. 16.
    Grbac, N., Schwermer, J.: On Eisenstein series and the cohomology of arithmetic groups. C. R. Math. Acad. Sci. Paris 348(11–12), 597–600 (2010)Google Scholar
  17. 17.
    Grbac, N., Schwermer, J.: Eisenstein series, cohomology of arithmetic groups, and automorphic \(L\)-functions at half integral arguments. Forum Math. 26(6), 1635–1662 (2014)Google Scholar
  18. 18.
    Grbac, N., Schwermer, J.: Eisenstein cohomology for unitary groups I. The case of relative rank one, in preparationGoogle Scholar
  19. 19.
    Shahidi, F.: A proof of Langlands’ conjecture on Plancherel measures; complementary series for \(p\)-adic groups. Ann. Math. (2) 132(2), 273–330 (1990)Google Scholar
  20. 20.
    Shahidi, F.: Eisenstein Series and Automorphic \(L\)-Functions. American Mathematical Society Colloquium Publications, vol. 58. American Mathematical Society, Providence (2010)Google Scholar
  21. 21.
    Cogdell, J.W., Kim, H.H., Piatetski-Shapiro, I.I., Shahidi, F.: On lifting from classical groups to \(GL_N\). Publ. Math. Inst. Hautes Études Sci. 93, 5–30 (2001)Google Scholar
  22. 22.
    Cogdell, J.W., Kim, H.H., Piatetski-Shapiro, I.I., Shahidi, F.: Functoriality for the classical groups. Publ. Math. Inst. Hautes Études Sci. 99, 163–233 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Grbac, N.: On the residual spectrum of split classical groups supported in the Siegel maximal parabolic subgroup. Monatsh. Math. 163(3), 301–314 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Grbac, N., Shahidi, F.: Endoscopic transfer for unitary groups and holomorphy of Asai \(L\)-functions. Pac. J. Math. 276(1), 185–211 (2015)Google Scholar
  25. 25.
    Arthur, J.: The Endoscopic Classification of Representations. American Mathematical Society Colloquium Publications, vol. 61. American Mathematical Society, Providence (2013)Google Scholar
  26. 26.
    Grbac, N., Schwermer, J.: On residual cohomology classes attached to relative rank one Eisenstein series for the symplectic group. Int. Math. Res. Not. IMRN (7), 1654–1705 (2011)Google Scholar
  27. 27.
    Gotsbacher, G., Grobner, H.: On the Eisenstein cohomology of odd orthogonal groups. Forum Math. 25(2), 283–311 (2013)Google Scholar
  28. 28.
    Trotabas, D.: Non annulation des fonctions \(L\) des formes modulaires de Hilbert au point central. Ann. Inst. Fourier (Grenoble) 61(1), 187–259 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Grbac, N., Schwermer, J.: A non-vanishing result for the residual Eisenstein cohomology of arithmetic groups of low rank (preprint)Google Scholar
  30. 30.
    Rohlfs, J., Speh, B.: Pseudo Eisenstein forms and the cohomology of arithmetic groups III: residual cohomology classes. On Certain \(L\)-Functions. Clay Mathematics Proceedings, vol. 13, pp. 501–523. American Mathematical Society, Providence (2011)Google Scholar
  31. 31.
    Grbac, N.: The Franke filtration of the spaces of automorphic forms supported in a maximal proper parabolic subgroup. Glas. Mat. Ser. III. 47(67)(2), 351–372 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Grbac, N., Grobner, H.: The residual Eisenstein cohomology of \(Sp_4\) over a totally real number field. Trans. Am. Math. Soc. 365(10), 5199–5235 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Schwermer, J.: On arithmetic quotients of the Siegel upper half space of degree two. Compos. Math. 58(2), 233–258 (1986)Google Scholar
  34. 34.
    Grobner, H.: Residues of Eisenstein series and the automorphic cohomology of reductive groups. Compos. Math. 149, 1061–1090 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of RijekaRijekaCroatia

Personalised recommendations