Advertisement

Globally Analytic p-adic Representations of the Pro–p Iwahori Subgroup of GL(2) and Base Change, II: A Steinberg Tensor Product Theorem

  • Laurent ClozelEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 245)

Abstract

In this paper, which is a sequel to Clozel (Globally analytic p-adic representations of the pro-p Iwahori subgroup of GL(2) and base change, I: Iwasawa algebras and a base change map, to appear in Bull. Iran Math Soc, [4]), we exploit the base change map for globally analytic distributions constructed there, relating distributions on the pro-p Iwahori subgroup of GL(2) over \(\mathbb {Q}_p\) and those on the pro-p Iwahori subgroup of GL(2, L) where L is an unramified extension of \(\mathbb {Q}_p\). This is used to obtain a functor, the ‘Steinberg tensor product’, relating globally analytic p-adic representations of these two groups. We are led to extend the theory, sketched by Emerton (Locally analytic vectors in representations of locally p-adic analytic groups, [6]), of these globally analytic representations. In the last section we show that this functor exhibits, for principal series, Langlands’ base change (at least for the restrictions of these representations to the pro-p Iwahori subgroups.)

Keywords

11R23 11F70 14G22 

References

  1. 1.
    Bertapelle, A.: Formal Néron models and Weil restriction. Math. Ann. 316(3), 437–463 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis. A Systematic Approach to Rigid Analytic Geometry. Grundlehren der Mathematischen Wissenschaften, vol. 261. Springer, Berlin (1984)Google Scholar
  3. 3.
    Clozel, L.: Presentation of an Iwasawa algebra: the case of \(\Gamma_1SL(2,{\mathbb{Z}}_p)\). Doc. Math. 16, 545–559 (2011)Google Scholar
  4. 4.
    Clozel, L.: Globally analytic p-adic representations of the pro-p Iwahori subgroup of GL(2) and base change, I : Iwasawa algebras and a base change map, to appear in Bull. Iran. Math. SocGoogle Scholar
  5. 5.
    Colmez, P.: Fonctions d’une variable p-adique. Astérisque 330, 13–59 (2010)Google Scholar
  6. 6.
    Emerton, M.: Locally analytic vectors in representations of locally p-adic analytic groupsGoogle Scholar
  7. 7.
    Lazard, M.: Groupes analytiques p-adiques. Inst. Hautes Etudes Sci. Publ. Math. 26, 389–603 (1965)Google Scholar
  8. 8.
    Orlik, S., Strauch, M.: On the irreducibility of locally analytic principal series representations. Represent. Theory 14, 713–746 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Schneider, P.: Nonarchimedean Functional Analysis. Springer Monographs in Mathematics. Springer, Berlin (2002)CrossRefGoogle Scholar
  10. 10.
    Schneider, P., Teitelbaum, J.: Banach space representations and Iwasawa theory. Isr. J. Math. 127, 359–380 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Schneider, P., Teitelbaum, J.: Locally analytic distributions and p-adic representation theory, with applications to \(GL_2\). J. Am. Math. Soc. 15(2), 443–468 (2002)CrossRefGoogle Scholar
  12. 12.
    Schneider, P., Teitelbaum, J.: Algebras of p-adic distributions and admissible representations. Invent. Math. 153(1), 145–196 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Steinberg, R.: Representations of algebraic groups. Nagoya Math. J. 22, 33–56 (1963)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wahle, C.: Weil restriction of p-adic analytic spacesGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de Paris-SudOrsayFrance

Personalised recommendations