Advertisement

2000 Nobel Prize in Chemistry

  • Seth C. Rasmussen
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

The awarding of the Nobel Prize in Chemistry to Hideki Shirakawa, Alan MacDiarmid and Alan Heeger in 2000 elevated the awareness of polyacetylene among the general science community and cemented the place of this polymeric material in the history of chemistry.This final chapter discusses the details of the awarding of the 2000 Nobel Prize in Chemistry, with particular discussion on the nature of discovery.

References

  1. 1.
    Nobelprize.org. Nobel Media AB (2014) The nobel prize in chemistry 2000. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/. Accessed 10 May 2018
  2. 2.
    Nobelprize.org. Nobel Media AB (2014) The nobel prize in chemistry 1912. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1912/. Accessed 10 May 2018
  3. 3.
    Nobelprize.org. Nobel Media AB (2014) The nobel prize in chemistry 1938. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1938/. Accessed 10 May 2018
  4. 4.
    Nobelprize.org. Nobel Media AB (2014) The nobel prize in chemistry 1963. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1963/. Accessed 10 May 2018
  5. 5.
    Nobelprize.org. Nobel Media AB (2014) Press release: the 2000 nobel prize in chemistry. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/press.html. Accessed 10 May 2018
  6. 6.
    Nobelprize.org. Nobel Media AB (2014) The nobel prize in chemistry 2000—advanced information. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/advanced.html. Accessed 10 May 2018
  7. 7.
    Frängsmyr T (ed) (2001) Les Prix Nobel. The nobel prizes 2000, Nobel Foundation, Stockholm, p 8Google Scholar
  8. 8.
    Heeger AJ (2016) Never lose your nerve! World Scientific Publishing, Singapore, pp 151–163Google Scholar
  9. 9.
    Nobelprize.org. Nobel Media AB (2014) The nobel prize award ceremony 2000. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/award-video.html. Accessed 10 May 2018
  10. 10.
    Nordén B (2001) The nobel prize in chemistry. In: Frängsmyr T (ed) Les Prix Nobel. The nobel prizes 2000, Nobel Foundation, Stockholm, pp 21–23Google Scholar
  11. 11.
    Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. In: Frängsmyr T (ed) Les Prix Nobel. The nobel prizes 2000, Nobel Foundation, Stockholm, pp 144–181Google Scholar
  12. 12.
    MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers. In: Frängsmyr T (ed) Les Prix Nobel. The nobel prizes 2000, Nobel Foundation, Stockholm, pp 191–211Google Scholar
  13. 13.
    Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers. In: Frängsmyr T (ed) Les Prix Nobel. The nobel prizes 2000, Nobel Foundation, Stockholm, pp 217–266Google Scholar
  14. 14.
    Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel Lecture). Angew Chem Int Ed 40:2574–2580CrossRefGoogle Scholar
  15. 15.
    MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel Lecture). Angew Chem Int Ed 40:2581–2590CrossRefGoogle Scholar
  16. 16.
    Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew Chem Int Ed 40:2591–2611CrossRefGoogle Scholar
  17. 17.
    Shirakawa H (2002) The discovery of polyacetylene film. The dawning of an era of con-ducting polymers. Synth Met 125:3–10CrossRefGoogle Scholar
  18. 18.
    MacDiarmid AG (2002) Synthetic metals: a novel role for organic polymers. Synth Met 125:11–22CrossRefGoogle Scholar
  19. 19.
    Heeger AJ (2002) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth Met 125:23–42CrossRefGoogle Scholar
  20. 20.
    Shirakawa H (2001) Nobel lecture: The discovery of polyacetylene film—the dawning of an era of conducting polymers. Rev Modern Phys 73:713–718CrossRefGoogle Scholar
  21. 21.
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 578–580Google Scholar
  22. 22.
    Rasmussen SC (2011) Electrically conducting plastics: revising the history of conjugated organic polymers. In: Strom ET, Rasmussen SC (eds) 100 + years of plastics: Leo Baeke-land and beyond, acs symposium series 1080. American Chemical Society, Washington, DC, pp 147–163Google Scholar
  23. 23.
    Rasmussen SC (2014) The path to conductive polyacetylene. Bull Hist Chem 39:64–72Google Scholar
  24. 24.
    Rasmussen SC (2015) Early history of polypyrrole: the first conducting organic polymer. Bull Hist Chem 40:45–55Google Scholar
  25. 25.
    Rasmussen SC (2016) On the origin of ‘synthetic metals’. Mater Today 19:244–245CrossRefGoogle Scholar
  26. 26.
    Rasmussen SC (2016) On the origin of “synthetic metals”: Herbert McCoy, Alfred Ubbelohde, and the development of metals from nonmetallic elements. Bull Hist Chem 41:64–73Google Scholar
  27. 27.
    Rasmussen SC (2017) Early history of conductive organic polymers. In: Zhang Z, Rouabhia M, Moulton SE (eds) Conductive polymers: electrical interactions in cell biology and medicine. CRC Press, Boca Raton, FL, 2017; Chapter 1Google Scholar
  28. 28.
    Rasmussen SC (2017) The early history of polyaniline: discovery and origins. Substantia 1(2):99–109Google Scholar
  29. 29.
    Runge FF (1834) Ueber einige Producte der Steinkohlen-destillation. Ann Phys Chem 31:513–524CrossRefGoogle Scholar
  30. 30.
    McNeill R, Siudak R, Wardlaw JH, Weiss DE (1963) Electronic conduction in polymers. Aust J Chem 16:1056–1075CrossRefGoogle Scholar
  31. 31.
    Bolto BA, Weiss DE (1963) Electronic conduction in polymers. II. The electrochemical reduction of polypyrrole at controlled potential. Aust J Chem 16:1076–1089CrossRefGoogle Scholar
  32. 32.
    Bolto BA, McNeill R, Weiss DE (1963) Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aust J Chem 16:1090–1103CrossRefGoogle Scholar
  33. 33.
    Jozefowicz M, Yu LT (1966) Relations entre propriétés chimiques et électrochimiques de semi-conducteurs macromoléculaires. Rev Gen Electr 75:1008–1013Google Scholar
  34. 34.
    Yu LT, Jozefowicz M (1966) Conductivité et constitution chimique pe semi-conducteurs macromoléculaires. Rev Gen Electr 75:1014–1018Google Scholar
  35. 35.
    De Surville R, Jozefowicz M, Yu LT, Perichon J, Buvet R (1968) Electrochemical chains using protolytic organic semiconductors. Electrochim Acta 13:1451–1458CrossRefGoogle Scholar
  36. 36.
    Jozefowicz M, Yu LT, Perichon J, Buvet R (1969) Proprietes Nouvelles des Polymeres Semiconducteurs. J Polym Sci Part C Polym Symp 22:1187–1195CrossRefGoogle Scholar
  37. 37.
    Weiss DE, Bolto BA (1965) Organic polymers that conduct electricity. In: Physics and chemistry of the organic solid state. Interscience Publishers, New York, vol II, Chapter 2Google Scholar
  38. 38.
    Labes MM (1966) Conductivity in polymeric solids. Pure Appl Chem 21:275–285Google Scholar
  39. 39.
    Trivedi PD (1968) Electrically conductive polymers. Pop Plast 13(9):25–9; 13(10): 30–5Google Scholar
  40. 40.
    Rembaum A (1969) Conductive polymers. Encycl Polym. Sci Technol 11:318–337Google Scholar
  41. 41.
    Lupinski JH (1969) Conductive polymers. Ann N Y Acad Sci 155(2):561–565Google Scholar
  42. 42.
    Goodings EP (1970) Conductive polymers. Rep Prog Appl Chem 55:53–65Google Scholar
  43. 43.
    Brophy JJ, Buttrey JW (eds) (1962) Organic semiconductors. Proceedings of an interindustry conference. The Macmillan Company, New YorkGoogle Scholar
  44. 44.
    Okamoto Y, Brenner W (1964) Organic semiconductors. Rheinhold, New YorkGoogle Scholar
  45. 45.
    Gutmann F, Lyons LE (1967) Organic semiconductors. Wiley, New YorkGoogle Scholar
  46. 46.
    Office of Technical Services, U.S. Department of Commerce (1962) Organic semiconductors—their technological promise. U.S. Government Research Report, PB 181037Google Scholar
  47. 47.
    Mort J (1980) Conductive polymers. Science 208:819–825CrossRefPubMedGoogle Scholar
  48. 48.
    Seeger K (1982) The morphology and structure of highly conducting polymers. Angew Makromol Chem 109(110):227–251CrossRefGoogle Scholar
  49. 49.
    Kanatzidis MG (1990) Conductive polymers. Chem Eng News 68(49):36–54CrossRefGoogle Scholar
  50. 50.
    Feast WJ, Tsibouklis J, Pouwer KL, Groenendaal L, Meijer EW (1996) Synthesis, processing and material properties of conjugated polymers. Polymer 37:5017–5047CrossRefGoogle Scholar
  51. 51.
    Schickore J (2014) Scientific discovery. In: Zalta EN (ed) The Stanford encyclopedia of philosophy. https://plato.stanford.edu/archives/spr2014/entries/scientific-discovery/. Accessed 10 May 2018
  52. 52.
    Hargittai I (2011) Risking reputation: conducting polymers. Drive and curiosity: what fuels the passion for science. Prometheus Books, Amherst, NY, pp 173–190Google Scholar
  53. 53.
    Fox R (2014) The nature of discovery. Notes Rec 68:319–321CrossRefGoogle Scholar
  54. 54.
    Anon (2017) Awkward first dates. Nature 550:7Google Scholar
  55. 55.
    Hargittai B, Hargittai I (2005) Alan G. MacDiarmid. In: Candid science V: conversations with famous scientists. Imperial College Press, London, pp 401–409Google Scholar
  56. 56.
    Hargittai B, Hargittai I (2005) Alan J. Heeger. In: Candid science V: conversations with famous scientists. Imperial College Press, London, pp 411–427Google Scholar
  57. 57.
    Heeger AJ (2016) Never lose your nerve! World Scientific Publishing, Singapore, pp 143–144Google Scholar
  58. 58.
    MacGarry DD (ed) (1955) The metalogicon of John Salisbury: A twelfth-century defense of the verbal and logical arts of the Trivium. University of California Press, Berkeley, p 167Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryNorth Dakota State UniversityFargoUSA

Personalised recommendations