Advertisement

Sustainable Production of Biofuels from Weedy Biomass and Other Unconventional Lignocellulose Wastes

  • Anurup Adak
  • Surender Singh
  • A. K. Lavanya
  • Anamika Sharma
  • Lata Nain
Chapter

Abstract

The energy demand for different sectors is gradually escalating due to increase in population, urbanization and industrialization. Simultaneously, there is immense progression in the area of second generation biofuel for transportation sector. Inventors of automotive engines had envisioned farm-grown energy sources to play an important role in supplying fuel to run these vehicles. Maize, sugarcane and sugar beets are the main traditional substrates used for biofuel production. In Indian prospective, it is imperative to search for non-food feedstocks for long-term sustainability and economic viability of Indian bioethanol market. Hence, cellulosic materials such as unconventional agro-residues, fibrous crops and weedy biomass are attractive feedstock for bio-ethanol production. The excessive growth rate and wider adaptability of the weed biomass without any fertilizer input makes them a potential renewable source for ethanol production. The bioenergy production from these renewable resources can provide a higher degree of national energy security in an environment friendly, cost-effective and sustainable manner. However the data about biomass production, its availability and supply chain management options including transportations is still lacking. Moreover many potential weedy biomasses are mostly growing on community or degraded lands which make it difficult to collect the biomass for any commercial purposes. This chapter highlights the overview of unconventional fibres crops and weedy biomass as renewable resources for biofuel production.

References

  1. Adak A, Tiwari R, Singh S, Sharma S, Nain L (2016) Laccase production by a novel white-rot fungus Pseudolagarobasidium acaciicola LA 1 through solid-state fermentation of parthenium biomass and its application in dyes decolorization. Waste Biomass Valor 7:1427–1435CrossRefGoogle Scholar
  2. Adkins S, Shabbir A (2014) Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.). Pest Manage Sci 70:1023–1029CrossRefGoogle Scholar
  3. Al-Hamamre Z, Saidan M, Hararah M, Rawajfeh K, Alkhasawneh HE et al (2017) Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew Sustain Energy Rev 67:295–314CrossRefGoogle Scholar
  4. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861PubMedCrossRefGoogle Scholar
  5. Annual Report (2015–16) Sunn hemp Research Station, Pratapgarh and Directorate of Jute Development, KolkataGoogle Scholar
  6. Anonymous (2016) directorate of economics and statistics, Ministry of Agriculture and Farmers Welfare (2015–16)Google Scholar
  7. Aradhey A (2016) Global agricultural information network (GAIN) report -India Biofuels Annual https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_New%20Delhi_India_6-24- 2016.pdf. New Delhi
  8. Asgher M, Ahmad Z, Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crops Prod 44:488–495CrossRefGoogle Scholar
  9. Béguin P, Aubert J-P (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58PubMedCrossRefGoogle Scholar
  10. Belancic A, Scarpa J, Peirano A, Díaz R, Steiner J et al (1995) Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. J Biotechnol 41:71–79PubMedCrossRefGoogle Scholar
  11. Bharadwaja STP, Singh S, Moholkar VS (2015) Design and optimization of a sono-hybrid process for bioethanol production from Parthenium hysterophorus. J Taiwan Inst Chem Eng 51:71–78CrossRefGoogle Scholar
  12. Borah AJ, Singh S, Goyal A, Moholkar VS (2016) An assessment of the potential of invasive weeds as multiple feedstocks for biofuel production. RSC Adv 6:47151–47163CrossRefGoogle Scholar
  13. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRefGoogle Scholar
  14. Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457PubMedCrossRefGoogle Scholar
  15. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 849–864Google Scholar
  16. Chandel AK, Lakshmi Narasu M, Chandrasekhar G, Manikyam A, Venkateswar Rao L (2009) Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour Technol 100:2404–2410PubMedCrossRefGoogle Scholar
  17. Chen L, Liu T, Zhang W, Chen X, Wang J (2012) Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour Technol 111:208–214PubMedCrossRefGoogle Scholar
  18. Chinnadurai K, Muthukumarappan K, L Julson J (2008) Influence of high shear bioreactor parameters on carbohydrate release from different biomasses. 2008 Providence, Rhode Island, 29 June–2 July, 2008. St. Joseph, MI: ASABEGoogle Scholar
  19. Christov LP, Myburgh J, van Tonder A, Prior BA (1997) Hydrolysis of extracted and fibre-bound xylan with Aureobasidium pullulans enzymes. J Biotechnol 55:21–29CrossRefGoogle Scholar
  20. Clayton WD, Renvoize SA (1986) Genera graminum. Grasses of the World. Genera graminum Grasses of the World 13Google Scholar
  21. Cosentino SL, Copani V, Testa G, Scordia D (2015) Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. a potential perennial grass for biomass production in marginal land in semi-arid Mediterranean environment. Ind Crops Prod 75:93–102CrossRefGoogle Scholar
  22. Dale BE, Moreira MJ (1982) Freeze-explosion technique for increasing cellulose hydrolysis: Colorado State University, Fort Collins. Medium: X; Size: pp 31–43Google Scholar
  23. das Neves MA, Kimura T, Shimizu N, Nakajima M (2007) State of the art and future trends of bioethanol production. Dyn Biochem Process Biotechnol Mol Biol 1:1–14Google Scholar
  24. Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5:578–595PubMedPubMedCentralCrossRefGoogle Scholar
  25. Day MD, Wiley CJ, Playford J, Zalucki MP (2003) Lantana: current management status and future prospects, 135pGoogle Scholar
  26. Day MD, Clements DR, Gile C, Senaratne WKAD, Shen S et al (2016) Biology and impacts of Pacific Islands invasive species. 13. Mikania micrantha Kunth (Asteraceae). Pac Sci 70:257–285CrossRefGoogle Scholar
  27. Dhileepan K, McFadyen RC (2012) Parthenium hysterophorus L.–parthenium. Biological control of weeds in Australia 448–462Google Scholar
  28. Dias JM, Alvim-Ferraz MCM, Almeida MF (2009) Production of biodiesel from acid waste lard. Bioresour Technol 100:6355–6361PubMedCrossRefGoogle Scholar
  29. Duan L, Yu W, Li Z (2017) Analysis of structural changes in jute fibers after peracetic acid treatment. J Eng Fabr Fibers (JEFF) 12Google Scholar
  30. Dwivedi P, Vivekanand V, Ganguly R, Singh RP (2009) Parthenium sp. as a plant biomass for the production of alkalitolerant xylanase from mutant Penicillium oxalicum SAUE-3.510 in submerged fermentation. Biomass Bioenergy 33:581–588CrossRefGoogle Scholar
  31. Dziugan P, Balcerek M, Pielech-Przybylska K, Patelski P (2013) Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production. Biotechnol Biofuels 6:158PubMedPubMedCentralCrossRefGoogle Scholar
  32. Freitas Sd, Fredo CE (2005) Biodiesel à base de óleo de mamona: algumas considerações. Informações Econômicas 35:37–42Google Scholar
  33. Gandolfi S, Ottolina G, Consonni R, Riva S, Patel I (2014) Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars. Chemsuschem 7:1991–1999PubMedCrossRefPubMedCentralGoogle Scholar
  34. Ghosh T, Chakraborty K (1970) Growing Hibiscus cannabinus (H.C. mesta) for fibre. Jute Bull 32:154–157Google Scholar
  35. Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. Microbiology 139:187–194Google Scholar
  36. Gopinathan MC, Sudhakaran R (2009) Biofuels: opportunities and challenges in India. In Vitro Cell Dev Biol Plant 45:350–371CrossRefGoogle Scholar
  37. Guerriero G, Hausman J-F, Strauss J, Ertan H, Siddiqui KS (2016) Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng Life Sci 16:1–16CrossRefGoogle Scholar
  38. Guo G-L, Hsu D-C, Chen W-H, Chen W-H, Hwang W-S (2009) Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition. Enzyme Microb Technol 45:80–87CrossRefGoogle Scholar
  39. Gupta B, Prakash G (1969) Effect of sowing sunnhemp for fibre and green manuring on various dates on the succeeding rabi crop of wheat. Indian J AgronGoogle Scholar
  40. Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567CrossRefGoogle Scholar
  41. Gupta R, Khasa YP, Kuhad RC (2011) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr Polym 84:1103–1109CrossRefGoogle Scholar
  42. Hamelinck CN, Gv Hooijdonk, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410CrossRefGoogle Scholar
  43. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18PubMedCrossRefGoogle Scholar
  44. Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sustain Energy Rev 32:504–512CrossRefGoogle Scholar
  45. Holtzapple MT, Jun J-H, Ashok G, Patibandla SL, Dale BE (1991) The ammonia freeze explosion (AFEX) process. Appl Biochem Biotechnol 28:59–74CrossRefGoogle Scholar
  46. Ighodalo O, Zoukumor K, Egbon C, Okoh S, Odu K (2011) Processing water hyacinth into biomass Briquettes for cooking purposes. J Emerg Trends Eng Appl Sci (JETEAS) 2:305–307Google Scholar
  47. Jingura RM, Musademba D, Matengaifa R (2010) An evaluation of utility of Jatropha curcas L. as a source of multiple energy carriers. Int J Eng Sci Technol 2Google Scholar
  48. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134CrossRefGoogle Scholar
  49. Ju X, Bowden M, Engelhard M, Zhang X (2014) Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates. Appl Microbiol Biotechnol 98:4409–4420PubMedCrossRefGoogle Scholar
  50. Kamireddy SR, Li J, Abbina S, Berti M, Tucker M et al (2013) Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment. Ind Crops Prod 49:598–609CrossRefGoogle Scholar
  51. Karunanithy C, Muthukumarappan K (2011) Optimization of switchgrass and extruder parameters for enzymatic hydrolysis using response surface methodology. Ind Crops Prod 33:188–199CrossRefGoogle Scholar
  52. Kataria R, Ghosh S (2014) NaOH pretreatment and enzymatic hydrolysis of Saccharum spontaneum for reducing sugars production. Energy Sources Part A 36:1028–1035CrossRefGoogle Scholar
  53. Kaur M, Aggarwal NK, Kumar V, Dhiman R (2014) Effects and management of Parthenium hysterophorus: A weed of global significance. International scholarly research notices 2014Google Scholar
  54. Keshav PK, Naseeruddin S, Rao LV (2016) Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol. Bioresour Technol 214:363–370PubMedCrossRefGoogle Scholar
  55. Keshk S, Suwinarti W, Sameshima K (2006) Physicochemical characterization of different treatment sequences on kenaf bast fiber. Carbohydr Polym 65:202–206CrossRefGoogle Scholar
  56. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375CrossRefGoogle Scholar
  57. Kim N-J, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469PubMedCrossRefGoogle Scholar
  58. Komolwanich T, Tatijarern P, Prasertwasu S, Khumsupan D, Chaisuwan T et al (2014) Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment. Cellulose 21:1327–1340CrossRefGoogle Scholar
  59. Kong G, Wu Q, Hu Q (2000) Exotic weed Mikania micrantha HBK appeared in south China. J Trop Subtrop Bot 8:27Google Scholar
  60. Kuila A, Mukhopadhyay M, Tuli D, Banerjee R (2011) Accessibility of enzymatically delignified Bambusa bambos for efficient hydrolysis at minimum cellulase loading: an optimization study. Enzyme Res 2011Google Scholar
  61. Kumar S (2009) Biological control of Parthenium in India: status and prospects. Ind J Weed Sci 41:1–18Google Scholar
  62. Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sustain Energy Rev 45:530–539CrossRefGoogle Scholar
  63. Kundu BC (1964) Sunn-hemp in India, pp 396–404Google Scholar
  64. Ladisch MR, Lin KW, Voloch M, Tsao GT (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzyme Microb Technol 5:82–102CrossRefGoogle Scholar
  65. Lau MW, Dale BE, Balan V (2008) Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol Bioeng 99:529–539PubMedCrossRefGoogle Scholar
  66. Lavanya C, Murthy IYLN, Nagaraj G, Mukta N (2012) Prospects of castor (Ricinus communis L.) genotypes for biodiesel production in India. Biomass Bioenergy 39:204–209CrossRefGoogle Scholar
  67. Lemons e Silva CF, Schirmer MA, Maeda RN, Barcelos CA, Pereira N (2015) Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electron J Biotechnol 18:10–15CrossRefGoogle Scholar
  68. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361CrossRefGoogle Scholar
  69. Li A, Khraisheh M (2010) Bioenergy II: bio-ethanol from municipal solid waste (MSW): the role of biomass properties and structures during the ethanol conversion process. Int J Chem Reactor Eng 8Google Scholar
  70. Liu J, Sidhu SS, Wang ML, Tonnis B, Habteselassie M et al (2015) Evaluation of various fungal pretreatment of switchgrass for enhanced saccharification and simultaneous enzyme production. J Clean Prod 104:480–488CrossRefGoogle Scholar
  71. Mahapatra B, Mitra S, Kumar M, Ghorai A, Sarkar S et al (2012) An overview of research and development in jute and allied fibre crops in India. Ind J Agron 57:132–142Google Scholar
  72. Maiti RK (1979) A study of the microscopic structure of the fiber strands of common Indian bast fibers and its economic implications. Econ Bot 33:78–87CrossRefGoogle Scholar
  73. Maiti RK, Chakravarty K (1977) A comparative study of yield components and quality of common Indian bast fibres. Econ Bot 31:55–60CrossRefGoogle Scholar
  74. Maity S, Chowdhury S, Datta AK (2012) Jute biology, diversity, cultivation, pest control, fiber production and genetics. In: Lichtfouse E (ed) Organic fertilisation, soil quality and human health. Springer, Dordrecht, pp 227–262Google Scholar
  75. Mannan KM (1993) X-ray diffraction study of jute fibres treated with NaOH and liquid anhydrous ammonia. Polymer 34:2485–2487CrossRefGoogle Scholar
  76. McIntosh S, Vancov T, Palmer J, Morris S (2014) Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes. Bioresour Technol 173:42–51PubMedCrossRefGoogle Scholar
  77. Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K et al (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources 6:5224–5259Google Scholar
  78. Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources 5:928–938Google Scholar
  79. Mishima D, Kuniki M, Sei K, Soda S, Ike M et al (2008) Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour Technol 99:2495–2500PubMedCrossRefGoogle Scholar
  80. Mosier N, Wyman C, Dale B, Elander R, Lee YY et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686PubMedCrossRefGoogle Scholar
  81. Mukhopadhyay M, Kuila A, Tuli DK, Banerjee R (2011) Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass Bioenergy 35:3584–3591CrossRefGoogle Scholar
  82. Murali S, Shrivastava R, Saxena M (2007) Quantification of agricultural residues for energy generation—a case study. J Inst Public Health Eng 3:27–31Google Scholar
  83. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234CrossRefGoogle Scholar
  84. Neto CP, Seca A, Fradinho D, Coimbra MA, Domingues F et al (1996) Chemical composition and structural features of the macromolecular components of Hibiscus cannabinus grown in Portugal. Ind Crops Prod 5:189–196CrossRefGoogle Scholar
  85. Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast. J Biotechnol 97:107–116PubMedCrossRefGoogle Scholar
  86. Nur Aimi MN, Anuar H, Nurhafizah SM, Zakaria S (2015) Effects of dilute acid pretreatment on chemical and physical properties of kenaf biomass. J Nat Fibers 12:256–264CrossRefGoogle Scholar
  87. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091PubMedCrossRefGoogle Scholar
  88. Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89:327–335CrossRefGoogle Scholar
  89. Pan X, Gilkes N, Kadla J, Pye K, Saka S et al (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnol Bioeng 94:851–861PubMedCrossRefGoogle Scholar
  90. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169CrossRefGoogle Scholar
  91. Pandiyan K, Tiwari R, Rana S, Arora A, Singh S et al (2014) Comparative efficiency of different pretreatment methods on enzymatic digestibility of Parthenium sp. World J Microbiol Biotechnol 30:55–64PubMedCrossRefGoogle Scholar
  92. Panje RR (1970) The Evolution of a Weed. PANS Pest Art News Summ 16:590–595CrossRefGoogle Scholar
  93. Paridah MT, Basher AB, SaifulAzry S, Ahmed Z (2011) Retting process of some bast plant fibres and its effect on fibre quality: a review. BioResources 6:5260–5281Google Scholar
  94. Patel S (2011) Harmful and beneficial aspects of Parthenium hysterophorus: an update. 3 Biotech 1:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  95. Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63PubMedCrossRefGoogle Scholar
  96. Pilu R, Badone FC, Michela L (2012) Giant reed (Arundo donax L.): a weed plant or a promising energy crop? Afr J Biotechnol 11:9163–9174Google Scholar
  97. Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14:65–76CrossRefGoogle Scholar
  98. Pingali SV, Urban VS, Heller WT, McGaughey J, O’Neill H et al (2010) Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromol 11:2329–2335CrossRefGoogle Scholar
  99. Prasad S, Williams AC (2009) Extent and distribution of some invasive plant species in Asian Elephant habitats. Preliminary Technical Report of IUCN As ESG Wild Elephant and Elephant Habitat Management Task Force, Species Survival Commission, pp 34–38Google Scholar
  100. Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39CrossRefGoogle Scholar
  101. Priyanka N, Joshi P (2013) A review of Lantana camara studies in India. Int J Sci Res Publ 3:1–11Google Scholar
  102. Raj SK, Syriac EK (2016) Invasive alien weeds as bio-resource: a review. Agric Rev 37Google Scholar
  103. Rana S, Tiwari R, Arora A, Singh S, Kaushik R et al (2013) Prospecting Parthenium sp. pretreated with Trametes hirsuta, as a potential bioethanol feedstock. Biocatal Agric Biotechnol 2:152–158Google Scholar
  104. Ravindranath NH, Sita Lakshmi C, Manuvie R, Balachandra P (2011) Biofuel production and implications for land use, food production and environment in India. Energy Policy 39:5737–5745CrossRefGoogle Scholar
  105. Rowell RM, Stout HP (1998) Jute and Kenaf. In: Lewin M, Pearce E (eds) Handbook of Fibre Chemistry. Marcel Dekker Inc., New York, p 504Google Scholar
  106. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291PubMedCrossRefGoogle Scholar
  107. Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77PubMedCrossRefGoogle Scholar
  108. Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT et al (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506PubMedCrossRefGoogle Scholar
  109. Sannigrahi P, Ragauskas AJ, Miller SJ (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. BioEnergy Res 1:205–214CrossRefGoogle Scholar
  110. Saritha M, Arora A, Nain L (2012) Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresour Technol 104:459–465PubMedCrossRefGoogle Scholar
  111. Sarkar S, Hazra S, Sen H, Karmakar P, Tripathi M (2015) Sunnhemp in India. ICAR-Central Research Institute for Jute and Allied Fibres (ICAR), Barrackpore 140: 10Google Scholar
  112. Satya P, Maiti R (2013) Bast and leaf fibre crops: kenaf, hemp, jute, agave, etc. In: Singh BP (ed) Biofuel crops: production, physiology and genetics. CABI International, Oxfordshire (UK) 292pGoogle Scholar
  113. Scordia D, Cosentino SL, Jeffries TW (2010) Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. Bioresour Technol 101:5358–5365PubMedCrossRefGoogle Scholar
  114. Sharma A (1971) Eradication and utilization of water hyacinth—a review. Curr Sci 40:51–55Google Scholar
  115. Sharma R (2003) Performance of different herbicides for control of Congress grass (Parthenium hysterophorus L.) in non-cropped areas. Ind J Weed Sci 35:242–245Google Scholar
  116. Sharma A, Nain V, Tiwari R, Singh S, Adak A et al (2017) Simultaneous saccharification and fermentation of alkali-pretreated corncob under optimized conditions using cold-tolerant indigenous holocellulase. Korean J Chem Eng 34:773–780CrossRefGoogle Scholar
  117. Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96CrossRefGoogle Scholar
  118. Shin S-J, Sung YJ (2008) Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation. Radiat Phys Chem 77:1034–1038CrossRefGoogle Scholar
  119. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011PubMedCrossRefPubMedCentralGoogle Scholar
  120. Singh RM, Poudel MS (2013) Briquette fuel-an option for management of Mikania micrantha. Nepal J Sci Technol 14:109–114CrossRefGoogle Scholar
  121. Singh S, Khanna S, Moholkar VS, Goyal A (2014) Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels. Appl Energy 129:195–206CrossRefGoogle Scholar
  122. Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU et al (2010) Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833PubMedCrossRefGoogle Scholar
  123. Sullivan P, Wood R (2012) Water hyacinth (Eichhornia crassipes (Mart.) Solms) seed longevity and the implications for managementGoogle Scholar
  124. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMedCrossRefGoogle Scholar
  125. Sur D, Amin MN (2010) Physics and chemistry of jute. Int Jute Study Grou 35–55Google Scholar
  126. Suresh S, Kumar A, Shukla A, Singh R, Krishna C (2017) Biofuels and bioenergy (BICE2016): International Conference, Bhopal, India, 23–25 February 2016, Springer, BerlinGoogle Scholar
  127. Swain K (2014) Biofuel production in India: potential, prospectus and technology. J Fundam Renew Energy Appl 4Google Scholar
  128. Tassinari T, Macy C, Spano L, Ryu DDY (1980) Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymatic hydrolysis. Biotechnol Bioeng 22:1689–1705CrossRefGoogle Scholar
  129. Tiffany DG (2009) Economic and environmental impacts of US corn ethanol production and use. Reg Econ Dev 5:42–58Google Scholar
  130. Tiwari R, Rana S, Singh S, Arora A, Kaushik R et al (2013) Biological delignification of paddy straw and Parthenium sp. using a novel micromycete Myrothecium roridum LG7 for enhanced saccharification. Bioresour Technol 135:7–11PubMedCrossRefGoogle Scholar
  131. Tiwari R, Nain PKS, Singh S, Adak A, Saritha M et al (2015) Cold active holocellulase cocktail from Aspergillus niger SH3: process optimization for production and biomass hydrolysis. J Taiwan Inst Chem Eng 56:57–66CrossRefGoogle Scholar
  132. Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S (2016) Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199:2–12PubMedCrossRefGoogle Scholar
  133. Verma VK, Singh YP, Rai JPN (2007) Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresour Technol 98:1664–1669PubMedCrossRefGoogle Scholar
  134. Versfeld D, Le Maitre D, Chapman R (1998) Alien invading plants and water resources in South Africa: a preliminary assessment: The CommissionGoogle Scholar
  135. Vishnu Vardhini KJ, Murugan R (2017) Effect of laccase and xylanase enzyme treatment on chemical and mechanical properties of banana fiber. J Nat Fibers 14:217–227CrossRefGoogle Scholar
  136. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457PubMedCrossRefGoogle Scholar
  137. Wang B, Liao W, Miao R (2000) Revision of Mikania from China and the key of four relative species. Acta Scientiarum Naturalium Universitatis Sunyatseni 40:72–75Google Scholar
  138. Wati L, Kumari S, Kundu BS (2007) Paddy straw as substrate for ethanol production. Indian J Microbiol 47:26–29PubMedPubMedCentralCrossRefGoogle Scholar
  139. Wei X, Zhou S, Huang Y, Huang J, Chen P et al (2016) Three fiber crops show distinctive biomass saccharification under physical and chemical pretreatments by altered wall polymer features. BioResources 11:2124–2137Google Scholar
  140. Weldemichael Y, Assefa G (2016) Assessing the energy production and GHG (greenhouse gas) emissions mitigation potential of biomass resources for Alberta. J Clean Prod 112:4257–4264CrossRefGoogle Scholar
  141. Witt ABR (2010) Biofuels and invasive species from an African perspective—a review. GCB Bioenergy 2:321–329CrossRefGoogle Scholar
  142. Yadav A, Balyan RS, Malik RK, Malik RS, Singh S et al (2007) Efficacy of glyphosate, MON-8793 and MON-8794 for general weed control under non-cropped situations. Environ Ecol 25:636–639Google Scholar
  143. Yan J, Wei Z, Wang Q, He M, Li S et al (2015) Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. Bioresour Technol 193:103–109PubMedCrossRefGoogle Scholar
  144. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40CrossRefGoogle Scholar
  145. Yoon SY, Kim D-J, Sung YJ, Han S, Aggangan NS, et al (2016) Enhancement of enzymatic hydrolysis of kapok [Ceiba pentandra (L.) Gaertn.] seed fibers with potassium hydroxide pretreatment. Asia Life Sci 25:17–29Google Scholar
  146. Yu H, Guo G, Zhang X, Yan K, Xu C (2009) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol 100:5170–5175PubMedCrossRefGoogle Scholar
  147. Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774CrossRefGoogle Scholar
  148. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815PubMedCrossRefGoogle Scholar
  149. Zheng Y, Lin H-M, Wen J, Cao N, Yu X et al (1995) Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett 17:845–850CrossRefGoogle Scholar
  150. Zheng Y, Lin HM, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896PubMedCrossRefGoogle Scholar
  151. Zuleta EC, Rios LA, Benjumea PN (2012) Oxidative stability and cold flow behavior of palm, sacha-inchi, jatropha and castor oil biodiesel blends. Fuel Process Technol 102:96–101CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Anurup Adak
    • 1
  • Surender Singh
    • 2
  • A. K. Lavanya
    • 2
  • Anamika Sharma
    • 2
  • Lata Nain
    • 2
  1. 1.Centre for Rural Development and TechnologyIIT DelhiNew DelhiIndia
  2. 2.Division of MicrobiologyICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations