Advertisement

Role of Systematic Biology in Biorefining of Lignocellulosic Residues for Biofuels and Chemicals Production

  • Vishal Sharma
  • Bilqeesa Bhat
  • Mahak Gupta
  • Surbhi Vaid
  • Shikha Sharma
  • Parushi Nargotra
  • Satbir Singh
  • Bijender Kumar Bajaj
Chapter

Abstract

World has witnessed most unprecedented economic/industrial growth during past few decades. But this resulted in massive depletion in the fossil fuel reserves, and grave environmental concerns like green house gas emissions, climate change etc. Keeping in view the serious consideration there is a paradigm shift towards the exploration of renewable energy resources, and development of processes/products that are green, clean and ecobenign. Lignocellulosic biomass, being an inexpensive and abundant energy source could be exploited for the production of bioenergy and other oleochemicals. But due to recalcitrant nature of lignocellulosic biomass, which is attributed to presence of lignin and hemicelluloses making the substrate inaccessible to hydrolytic enzymes. Therefore, the major challenge in biomass to biofuel/bio-actives is conversion delignification of lignocellulosic biomass. With the application of appropriate pretreatment technique, the complex biomass can be partially loosened and made accessible for hydrolysis. Environment friendly and cost effective biological pretreatment method using microorganisms offers advantages in getting the desired results in energy efficient manner. Appropriate combination of hydrolytic enzymes is required for complete degradation of cellulose and hemicelluloses into simpler sugars which served as raw material for further transformation. Successful saccharification of lignocellulosic biomass results in release of fermentable sugars which could act as starting material for production of bioenergy (Bioethanol, biobutanol, biohydrogen, biogas etc.) and other value-added products (Bioplastic, animal feed, composites, enzymes, xylooligosaccharides etc.). With the advancement in technology (green biotechnology), the conversion costs of lignocellulosic biomass could be lowered and product yields could be enhanced making the production processes more economical and alleviating the deleterious effects of harsh chemicals and fossil fuels on environment.

Keywords

Biofuel Lignocellulosic biomass Pretreatment Xylooligosaccharides Polyhydroxybutyrate Biohydrogen Biobutanol Saccharification 

Notes

Acknowledgements

Dr. Bijender Kumar (Bajaj) gratefully acknowledges the Institute of Advanced Study, Durham University, Durham, UK, for providing COFUND-International Senior Research Fellowship, Commonwealth Scholarship Commission, UK for commonwealth fellowship and VLIR-UOS, Belgium for ‘Research Stays’. Dr. Bijender Kumar (Bajaj) thanks the University Grants Commission (UGC), Indian Council of Medical Research (ICMR), Council of Scientific and Industrial Research (CSIR), Department of Science and Technology (DST) and Department of Biotechnology (DBT), Government of India, for financial support. Authors thank the Director, School of Biotechnology, University of Jammu, Jammu, for laboratory facilities.

References

  1. Aachary AA, Prapulla SG (2009) Value addition to corncob: production and characterization of xylooligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154. Bioresour Technol 100:991–995PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abdeshahian P, Al-Shorgani NKN, Salih NKM, Shukor H, Kadier A, Hamid AA, Kalil MS (2014) The production of biohydrogen by a novel strain Clostridium sp. YM1 in dark fermentation process. Int J Hydrog Energy 39:12524–12531CrossRefGoogle Scholar
  3. Adıgüzel AO, Tunçer M (2017) Production and characterization of partially purified thermostable endoxylanase and endoglucanase from novel Actinomadura geliboluensis and the biotechnological applications in the saccharification of lignocellulosic biomass. BioResource 12:2528–2547CrossRefGoogle Scholar
  4. Alam F, Mobin S, Chowdhury H (2015) Third generation biofuel from Algae. Procedia Eng 105:763–768CrossRefGoogle Scholar
  5. Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130:411–421PubMedCrossRefPubMedCentralGoogle Scholar
  6. Almeida JRM, Favaro LCL, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48PubMedPubMedCentralCrossRefGoogle Scholar
  7. Altaee N, Fahdil A, Yousif E, Sudesh K (2016) Recovery and subsequent characterization of polyhydroxybutyrate from Rhodococcus equi cells grown on crude palm kernel oil. J Taibah Univ Sci 10:543–550CrossRefGoogle Scholar
  8. Ang SK, Shaza EM, Adibah Y, Suraini AA, Madihah MS (2013) Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem 48:1293–1302CrossRefGoogle Scholar
  9. Aragon CC, Santos AF, Ruiz-Matute AI, Corzo N, Guisan JM, Monti R, Mateo C (2013) Continuous production of xylooligosaccharides in a packed bed reactor with immobilized–stabilized biocatalysts of xylanase from Aspergillus versicolor. J Mol Catal B Enzym 98:8–14CrossRefGoogle Scholar
  10. Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HMN (2017) Lignocellulose: A sustainable material to produce value-added products with a zero waste approach-A review. Int J Biol Macromo 99:308–318CrossRefGoogle Scholar
  11. Azelee NIW, Jahim JM, Rabu A, Murad AMA, Bakar FDA, Illias RM (2014) Efficient removal of lignin with the maintenance of hemicellulose from kenaf by two-stage pretreatment process. Carbohydr Polym 99:447–453CrossRefGoogle Scholar
  12. Azizi N, Najafpour G, Younesi H (2017) Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. Int J Biol Macromol 101:1029–1040PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bagnara C, Gaudin C, Belaich J (1987) Physiological properties of Cellulomonas fermentans, a mesophilic cellulolytic bacterium. Appl. Microbiol Biotechnol 26:170–176Google Scholar
  14. Bajaj BK, Claes IJ, Lebeer S (2015) Functional mechanisms of probiotics. J Microbiol Biotechnol Food Sci 4–321Google Scholar
  15. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev 36:91–106CrossRefGoogle Scholar
  16. Belorkar SA, Gupta AK (2016) Oligosaccharides: a boon from nature’s desk. AMB Express, pp 6–82Google Scholar
  17. Bengtsson S, Pisco AR, Reis MAM, Lemos PC (2010) Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms. J Biotechnol 145:253–263PubMedCrossRefPubMedCentralGoogle Scholar
  18. Berrocal M, Ball AS, Huerta S, Barrasa JM, Hernández M, Pérez-Leblic MI, Arias ME (2000) Biological upgrading of wheat straw through solid-state fermentation with Streptomyces cyaneus. Appl Microbiol Biotechnol 54:764–771Google Scholar
  19. Bhalla A, Bischoff KM, Sani RK (2015) Highly thermostable xylanase production from a Thermophilic Geobacillus sp. strain WsUcF1 utilizing lignocellulosic biomass. Front Bioeng Biotechnol 3:84PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bian J, Peng F, Peng XP, Peng P, Xu F, Sun RC (2013) Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresourc Technol 127:236–241CrossRefGoogle Scholar
  21. Biely P, Singh S, Puchart V (2016) Towards enzymatic breakdown of complex plant xylan structures: state of the art. Biotechnol Adv 7:1260–74CrossRefGoogle Scholar
  22. Braga CMP, da Silva Delabona P, da Silva Lima D, Paixão DAA, da Cruz Pradella JG, Farinas CS (2014) Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis. Biores Technol 170:316–324CrossRefGoogle Scholar
  23. Brethauer S, Studer MH (2014) Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ Sci 7:1446–1453Google Scholar
  24. Brijwani K, Oberoi HS, Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45:120–128CrossRefGoogle Scholar
  25. Brummer V, Skryja P, Jurena T, Hlavacek V, Stehlik P (2014) Suitable technological conditions for enzymatic hydrolysis of waste paper by novozymes (R) enzymes NS50013 and NS50010. Appl Biochem Biotechnol 174:1299–1308PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bundhoo MAZ, Mohee R (2016) Inhibition of dark fermentative bio-hydrogen production: a review. Int J Hydrog Energy 41:6713–6733CrossRefGoogle Scholar
  27. Cao G, Ren N, Wang A, Lee DJ, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 34:7182–7188Google Scholar
  28. Castillo T, Flores C, Segura D, Espín G, Sanguino J, Cabrera E, Barreto J, Diaz-Barrera A, Pena C (2017) Production of polyhydroxybutyrate (PHB) of high and ultra-high molecular weight by Azotobacter vinelandii in batch and fed-batch cultures. J Chem Technol Biotechnol 92:1809–1816CrossRefGoogle Scholar
  29. Cesarino I, Araújo P, Domingues Júnior AP, Mazzafera P (2012) An overview of lignin metabolism and its effect on biomass recalcitrance. Braz J Bot 35:303–311CrossRefGoogle Scholar
  30. Chang S, Guo Y, Wu B, He B (2017) Extracellular expression of alkali tolerant xylanase from Bacillus subtilis Lucky9 in E. coli and application for xylooligosaccharides production from agro-industrial waste. Int J Biol Macromol 96:249–56PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresourc Technol 115:215–221CrossRefGoogle Scholar
  32. Chaula Z, Said M, John G, Manyele S, Mhilu C (2014) Modelling the suitability of pine sawdust for energy production via biomass steam explosion. Smart Grid Renew Energy 5:1–7CrossRefGoogle Scholar
  33. Chen G, Wang Y (2013) Medical applications of biopolyesters polyhydroxyalkanoates. Chinese J Polym Sci 31:719–736CrossRefGoogle Scholar
  34. Chen MH, Bowman MJ, Cotta MA, Dien BS, Iten LB, Whitehead TR, Singh V (2016) Miscanthus × giganteus xylooligosaccharides: Purification and fermentation. Carbohydr Polym 140:96–103PubMedCrossRefPubMedCentralGoogle Scholar
  35. Cheng CL, Lo YC, Lee KS, Lee DJ, Lin CY, Chang JS (2011) Biohydrogen production from lignocellulosic feedstock. Bioresour Technol 102:8514–8523PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chong ML, Raha AR, Shirai Y, Hassan MA (2009) Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent. Int J Hydrog Energy 34:764–71CrossRefGoogle Scholar
  37. Da Vinha FNM, Gravina-Oliveira MP, Franco MN, Macrae A, da Silva Bon EP, Nascimento RP, Coelho RR (2011) Cellulase Production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate. App Biochem Biotechnol 164:256–267CrossRefGoogle Scholar
  38. Danish M, Naqvi M, Farooq U, Naqvi S (2015) Characterization of South Asian agricultural residues for potential utilization in future ‘energy mix’. Energy Procedia 75:2974–2980CrossRefGoogle Scholar
  39. Datar R, Huang J, Maness P, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrog Energy 32:932–939CrossRefGoogle Scholar
  40. Davea BR, Sudhira AP, Parmara P, Pathaka Saurabh, Raykundaliya DP (2013) Subramanian Enhancement of cellulase activity by a new strain of Thermoascus aurantiacus: optimisation by statistical design response surface methodology. Biocatal Agric Biotechnol 2:108–115Google Scholar
  41. De Figueiredo FC, Carvalho AFA, Brienzo M, Campioni TS, de Oliva-Neto P (2017) Chemical input reduction in the arabinoxylan and lignocellulose alkaline extraction and xylooligosaccharides production. Bioresourc Technol 228:164–70CrossRefGoogle Scholar
  42. De Sousa PR, da Rocha Olivieri De Barros R, Inoue H, Yano S and Pinto Da Silva Bon E (2015) Production of xylanase, α-L-arabinofuranosidase, β-xylosidase, and β-glucosidase by Aspergillus awamori using the liquid stream from hot-compressed water treatment of sugarcane bagasse. Biomass Conv Bioref 5:299–307Google Scholar
  43. Desvaux M, Guedon E, Petitdemange H (2001) Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. J Bacteriol 183:119–130Google Scholar
  44. De Vrije TD, De Haas GG, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrog Energy 27:1381–1390CrossRefGoogle Scholar
  45. Devi MC, Kumar MS (2012) Production, optimization and partial purification of cellulase by Aspergillus niger fermented with paper and timber sawmill industrial wastes. J Microbiol Biotech Res 2:120–128Google Scholar
  46. Ding L, Cheng J, Xia A, Jacob A, Voelklein M, Murphy JD (2016a) Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro and micro-algal biomass. Bioresour Technol 218:224–231PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ding J-C, Xu G-C, Han R-Z, Ni Y (2016b) Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864. Bioresour Technol 199:228–234PubMedCrossRefPubMedCentralGoogle Scholar
  48. Dionisi D, Anderson JA, Aulenta F, McCue A, Paton G (2015) The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. J Chem Technol Biotechnol 90:366–383CrossRefGoogle Scholar
  49. Domozych DS, Ciancia M, Fangel JU, Mikkelsen, MD, Ulvskov P, Willats WGT (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3.  https://doi.org/10.3389/fpls.2012.00082
  50. Driss D, Zouari-Ellouzi S, Chaari F, Kallel F, Ghazala I, Bouaziz F, Chaabouni SE (2014) Production and in vitro evaluation of xylooligosaccharides generated from corncobs using immobilized Penicillium occitanis xylanase. J Mol Catal B Enzym 102:146–153CrossRefGoogle Scholar
  51. Du C, Sabirova J, Soetaert W, Lin SKC (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25Google Scholar
  52. Dutra TR, Guimarães VM, Varela EM, da Silva Fialho L, Milagres AMF, Falkoski DL, Zanuncio JC and de Rezende ST (2017) A Chrysoporthe cubensis enzyme cocktail produced from a low-cost carbon source with high biomass hydrolysis efficiency. Sci Rep 7:3893Google Scholar
  53. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536PubMedCrossRefPubMedCentralGoogle Scholar
  54. Fan YT, Zhang YH, Zhang SF, Hou, HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technol 97:500–505Google Scholar
  55. Fan Y, Xing Y, Ma H, Pan C, Hou H (2008) Enhanced cellulose-hydrogen production from corn stalk by lesser panda manure. Int J Hydrog Energy 33:6058–6065CrossRefGoogle Scholar
  56. Faryar R, Linares-Pasten JA, Immerzeel P, Mamo G, Andersson M, Stålbrand H, Karlsson EN (2015) Production of prebiotic xylooligosaccharides from alkaline extracted wheat straw using the K80R-variant of a thermostable alkali-tolerant xylanase. Food Bioprod Process 93:1–10CrossRefGoogle Scholar
  57. Flores AC, Morlett JA, Rodriguez R (2016) Inulin potential for enzymatic obtaining of prebiotic oligosaccharides. Crit Rev Food Sci Nutr 56:1893–1902PubMedCrossRefPubMedCentralGoogle Scholar
  58. Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) Part II: carbohydrates. J Vis Exp.  https://doi.org/10.3791/1837CrossRefPubMedPubMedCentralGoogle Scholar
  59. Full TD, Jung DO, Madigan MT (2006) Production of poly-β-hydroxyalkanoates from soy molasses oligosaccharides by new, rapidly growing Bacillus species. Lett Appl Microbiol 43:377–384PubMedCrossRefPubMedCentralGoogle Scholar
  60. Garai D, Kumar V (2013) A Box-Behnken design approach for the production of xylanase by Aspergillus candidus under solid state fermentation and its application in saccharification of agro residues and Parthenium hysterophorus L. Ind Crops Prod 44:352–363CrossRefGoogle Scholar
  61. Gasparotto JM, Werle LB, Foletto EL, Kuhn RC, Jahn SL, Mazutti SL (2015) Production of cellulolytic enzymes and application of crude enzymatic extract for saccharification of lignocellulosic biomass. App Biochem Biotechnol 175:560–572Google Scholar
  62. Geigerova M, Bunesova V, Vlkova E, Salmonova H, Rada V (2017) Selection of prebiotic oligosaccharides suitable for synbiotic use in calves. Animal Feed Sci Technol 229:73–8CrossRefGoogle Scholar
  63. Gottumukkala LD, Parameswaran B, Valappil SK, Mathiyazhakan K, Pandey A, Sukumaran RK (2013) Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01. Bioresour Technol 145:182–187PubMedCrossRefPubMedCentralGoogle Scholar
  64. Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156:201–207PubMedCrossRefGoogle Scholar
  65. Gowda V, Shivakumar S (2014) Agrowaste-based Polyhydroxyalkanoate (PHA) production using hydrolytic potential of Bacillus thuringiensis IAM 12077. Braz Arch Biol Technol 57:55–61CrossRefGoogle Scholar
  66. Gowdhaman D, Ponnusami V (2015) Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential. ‎Int J Biol Macromol 79:595–600Google Scholar
  67. Gowdhaman D, Manaswini VS, Jayanthi V, Dhanasri M, Jeyalakshmi G, Gunasekar V, Ponnusami V (2014) Xylanase production from Bacillus aerophilus KGJ2 and its application in xylooligosaccharides preparation. Int J Biol Macromol 64:90–98PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gudynaite-Savitch L, White TC (2016) Fungal biotechnology for industrial enzyme production: focus on (hemi) cellulase production strategies advances and challenges in gene expression systems in fungi: advancements and applications. Springer International Publishing ( https://doi.org/10.1007/978-3-319-27951-0_19)
  69. Gullon B, Gullon P, Tavaria F, Pintado M, Gomes AM, Alonso JL, Parajó JC (2014) Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran. J Funct Foods 6:438–449CrossRefGoogle Scholar
  70. Gupta M, Sharma M, Singh S, Gupta P, Bajaj BK (2015) Enhanced production of cellulase from Bacillus licheniformis K-3 with potential for saccharification of rice straw. Energ Technol 3:216–224CrossRefGoogle Scholar
  71. Haddar A, Driss D, Frikha F, Ellouz-Chaabouni S, Nasri M (2012) Alkaline xylanases from Bacillus mojavensis A21: production and generation of xylooligosaccharides. Int J Biol Macromol 51:647–656PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  73. Han H, Wei L, Liu B, Yang H, Shen J (2012) Optimization of biohydrogen production from soybean straw using anaerobic mixed bacteria. Int J Hydrog Energy 37:13200–13208CrossRefGoogle Scholar
  74. Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203Google Scholar
  75. Hecht MK, Steere WC (Eds) (1970) Essays in evolution and genetics in honor of Theodosius Dobzhansky ( https://doi.org/10.1007/978-1-4615-9585-4)
  76. Hijosa-Valsero M, Paniagua-García AI, Díez-Antolínez R (2017) Biobutanol production from apple pomace: the importance of pretreatment methods on the fermentability of lignocellulosic agro-food wastes. Appl Microbiol Biotechnol 101:8041–8052PubMedCrossRefPubMedCentralGoogle Scholar
  77. Inoue H, Decker SR, Taylor LR, Yano S, Sawayama S (2014) Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. Biotechnol Biofuel 7:151CrossRefGoogle Scholar
  78. Jambo SA, Abdulla R, Mohd Azhar SH, Marbawi H, Gansau JA, Ravindra P (2016) A review on third generation bioethanol feedstock. Renew Sust Energ Rev 65:756–769CrossRefGoogle Scholar
  79. Jayapal N, Samanta AK, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT (2013) Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Ind Crops Prod 42:14–24CrossRefGoogle Scholar
  80. Jeske S, Zannini E, Arendt EK (2017) Past, present and future: the strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res Int.  https://doi.org/10.1016/j.foodres.2017.03.045CrossRefPubMedPubMedCentralGoogle Scholar
  81. Johansen KS (2016) Discovery and industrial applications of lytic polysaccharide monooxygenases. Biochem Soc Trans 44:143–149PubMedCrossRefPubMedCentralGoogle Scholar
  82. John RP, Anisha GS, Madhavan NK, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193PubMedCrossRefPubMedCentralGoogle Scholar
  83. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kallel F, Driss D, Bouaziz F, Neifer M, Ghorbel R, Chaabouni SE (2015) Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitro evaluation as prebiotics. Food Bioprod Process 94:536–546CrossRefGoogle Scholar
  85. Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J2014:1–13Google Scholar
  86. Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technol 91:153–156Google Scholar
  87. Karthic P, Shiny J (2012) Comparisons and limitations of biohydrogen production processes: a review. Int J Adv Eng Technol 2:342–356Google Scholar
  88. Kaweeai A, Srisuwun A, Tantiwa N, Nontaman W, Boonchuay P, Kuntiya A, Seesuriyachan P (2016) Eco-friendly processing in enzymatic xylooligosaccharides production from corncob: Influence of pretreatment with sonocatalytic–synergistic Fenton reaction and its antioxidant potentials. Ultrason Sonochem 31:184–192CrossRefGoogle Scholar
  89. Keenan TM, Nakas JP, Tanenbaum SW (2006) Polyhydroxyalkanoate copolymers from forest biomass. J Ind Microbiol 33:616–626Google Scholar
  90. Kerem Z, Friesem D, Hadar Y (1992) Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1121–1127Google Scholar
  91. Khare SK, Pandey A, Larroche C (2015) Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem Eng J 102:38–44CrossRefGoogle Scholar
  92. Khuong LD, Kondo R, De Leon R, Kim Anh T, Shimizu K, Kamei I (2014) Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60. Int Biodeterior Biodegradation 88:62–68CrossRefGoogle Scholar
  93. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresourc Technol 199:42–48CrossRefGoogle Scholar
  94. Koller M, Atlic A, Dias M, Reiterer A, Braunegg G (2009) Microbial PHA production from waste raw materials. Plastics from Bacteria 14:85–119CrossRefGoogle Scholar
  95. Kong X, Xu H, Wu H, Wang C, He A, Ma J, Ren X, Jia H, Wei C, Jiang M, Ouyang P (2016) Biobutanol production from sugarcane bagasse hydrolysate generated with the assistance of gamma-valerolactone. Process Biochem 51:1538–1543CrossRefGoogle Scholar
  96. Kourmentza C, Placido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM (2017) Recent advances and challenges towards sustainable Polyhydroxyalkanoate (PHA) production. Bioeng 4:55Google Scholar
  97. Kshirsagar SD, Saratale GD, Saratale GD, Govindwar SP, Oh MK (2015) An isolated Amycolatopsis sp GDS for cellulase and xylanase production using agricultural waste biomass. J App Microbiol 120:112–125CrossRefGoogle Scholar
  98. Kudahettige-Nilsson RL, Helmerius J, Nilsson RT, Sjöblom M, Hodge DB, Rova U (2015) Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor. Bioresour Technol 176:71–79PubMedCrossRefPubMedCentralGoogle Scholar
  99. Kulasinski K, Keten S, Churakov SV, Derome D, Carmeliet J (2014) A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose 21:1103–1116CrossRefGoogle Scholar
  100. Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N (2009) Inexpensive fed-batch cultivation for high poly (3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J Biosci Bioeng 107:240–245PubMedCrossRefPubMedCentralGoogle Scholar
  101. Kumar AK, Parikh BS (2015) Cellulose-degrading enzymes from Aspergillus terreus D34 and enzymatic saccharification of mild alkali and diluteacid pretreated lignocellulosic biomass residues. Bioresour Bioprocess 2:7CrossRefGoogle Scholar
  102. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009a) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  103. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009b) Methods for pre-treatment of lignocellulosic biomass for efficient saccharification and biofuel production. Ind EngChem Res 48:3713–3729CrossRefGoogle Scholar
  104. Law KH, Cheng YC, Leung YC, Lo WH, Chu H, Yu HF (2003) Construction of recombinant Bacillus subtilis strains for PHA synthesis. Biochem Eng J 16:203–208CrossRefGoogle Scholar
  105. Lee JW, Kim JY, Jang HM, Lee MW, Park JM (2015) Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization. Bioresour Technol 182:296–301PubMedCrossRefPubMedCentralGoogle Scholar
  106. Lennartsson PR, Erlandsson P, Taherzadeh MJ (2014) Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol 165:3–8PubMedCrossRefPubMedCentralGoogle Scholar
  107. Li BZ, Balan V, Yuan YJ, Dale BE (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pre-treatment. Bioresour Technol 101:1285–1292PubMedCrossRefPubMedCentralGoogle Scholar
  108. Li H, Long C, Zhou J, Liu J, Wu X, Long M (2013) Rapid analysis of mono-saccharides and oligosaccharides in hydrolysates of lignocellulosic biomass by HPLC. Biotechnol Lett 35:1405–1409PubMedCrossRefGoogle Scholar
  109. Li H, Xue Y, Wu J, Wu H, Qin G, Li C, Long M (2016) Enzymatic hydrolysis of hemicelluloses from Miscanthus to monosaccharides or xylo-oligosaccharides by recombinant hemicellulases. Ind Crops Prod 79:170–179CrossRefGoogle Scholar
  110. Li J, Chen X, Qi B, Luo J, Zhang Y, Su Y, Wan Y (2014) Efficient production of acetone–butanol–ethanol (ABE) from cassava by a fermentation–pervaporation coupled process. Bioresour Technol 169:251–257PubMedCrossRefPubMedCentralGoogle Scholar
  111. Lin SH, Chou LM, Chien YW, Chang JS, Lin CI (2016) Prebiotic effects of Xylooligosaccharides on the improvement of microbiota balance in human subjects. Gastroenterol Res Pract.  https://doi.org/10.1155/2016/5789232CrossRefPubMedPubMedCentralGoogle Scholar
  112. Lin YS, Tseng MJ, Lee WC (2011) Production of xylooligosaccharides using immobilized endo-xylanase of Bacillus halodurans. Process Biochem 46:2117–2121CrossRefGoogle Scholar
  113. Liu C, Cheng X (2010) Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int J Hydrog Energy 35:8945–8952CrossRefGoogle Scholar
  114. Liu K, Atiyeh HK, Pardo-Planas O, Ramachandriya KD, Wilkins MR, Ezeji TC, Ujor V, Tanner RS (2015a) Process development for biological production of butanol from Eastern redcedar. Bioresour Technol 176:88–97PubMedCrossRefPubMedCentralGoogle Scholar
  115. Liu K, Atiyeh HK, Pardo-Planas O, Ezeji TC, Ujor V, Overton JC, Berning K, Wilkins MR, Tanner RS (2015b) Butanol production from hydrothermolysis-pretreated switchgrass: quantification of inhibitors and detoxification of hydrolyzate. Bioresour Technol 189:292–301PubMedCrossRefPubMedCentralGoogle Scholar
  116. Liu M, Huo W, Xu X, Weng X (2017) Recombinant Bacillus amyloliquefaciens xylanase A expressed in Pichia pastoris and generation of xylooligosaccharides from xylans and wheat bran. Int J Biol Macromol 105:656–63PubMedCrossRefPubMedCentralGoogle Scholar
  117. Lo YC, Lu WC, Chen CY, Chang JS (2010) Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresour Technol 101:5885–5891PubMedCrossRefGoogle Scholar
  118. Masood F, Hasan F, Ahmed S, Hameed A (2012) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from Bacillus cereus FA11 isolated from TNT-contaminated soil. Ann Microbiol 62:1377–1384CrossRefGoogle Scholar
  119. Matkar K, Chaplad D, Divecha J, Nighojkar A, Madamwar D (2013) Production of cellulase by a newly isolated strain of Aspergillus sydowii and its optimization under submerged fermentation. Int Biodeterior Biodegradation 78:24–33CrossRefGoogle Scholar
  120. Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609Google Scholar
  121. Menego D, Scholl ALL, Dillon JP, Camassola M (2016) Influence of different chemical pretreatments of elephant grass (Pennisetum purpureum, Schum.) used as a substrate for cellulase and xylanase production in submerged cultivation. Bioprocess Biosyst Eng 39:1455–1464CrossRefGoogle Scholar
  122. Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158PubMedCrossRefGoogle Scholar
  123. Milagres AMF, Carvalho W, Ferraz AL (2011) Topochemistry, porosity and chemical composition affecting enzymatic hydrolysis of lignocellulosic materials. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, Berlin, Germany, p 53Google Scholar
  124. Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63:114–122PubMedPubMedCentralCrossRefGoogle Scholar
  125. Moncada BJ, Aristizábal MV, Cardona ACA (2016) Design strategies for sustainable biorefineries. Biochem Eng J 116:122–134CrossRefGoogle Scholar
  126. Moniz P, Ho AL, Duarte LC, Kolida S, Rastall RA, Pereira H, Carvalheiro F (2016) Assessment of the bifidogenic effect of substituted xylooligosaccharides obtained from corn straw. Carbohydr Polym 136:466–73PubMedCrossRefGoogle Scholar
  127. Moniz P, Pereira H, Duarte LC, Carvalheiro F (2014) Hydrothermal production and gel filtration purification of xylooligosaccharides from rice straw. Ind Crops Prod 62:460–465CrossRefGoogle Scholar
  128. Morais AR, Bogel-Lukasik R (2013) Green chemistry and the biorefinery concept. Sustain Chem Process 1:18.  https://doi.org/10.1186/2043-7129-1-18CrossRefGoogle Scholar
  129. Moreira LRS (2016) Insights into the mechanism of enzymatic hydrolysis of xylan. Appl Microbiol Biotechnol 100:5205–5214PubMedCrossRefPubMedCentralGoogle Scholar
  130. Moreno P, Yanez C, Cardozo NSM, Escalante H, Combariza MY, Guzman C (2015) Influence of nutritional and physicochemical variables on PHB production from raw glycerol obtained from a Colombian biodiesel plant by a wild-type Bacillus megaterium strain. New Biotechnol 32:682–689CrossRefGoogle Scholar
  131. Morgan NK, Wallace A, Bedford MR, Choct M (2017) Efficiency of xylanases from families 10 and 11 in production of xylooligosaccharides from wheat arabinoxylans. Carbohydr Polym 167:290–6PubMedCrossRefPubMedCentralGoogle Scholar
  132. Mori T, Tsuboi Y, Ishida N, Nishikubo N, Demura T, Kikuchi J (2015) Multidimensional highresolution magic angle spinning and solution-state NMR characterization of 13C-labeled plant metabolites and lignocellulose. Sci Rep 5:1–12Google Scholar
  133. Mozumder MS, Garcia-Gonzalez L, Wever HD, Volcke EIP (2015) Poly(3-hydroxybutyrate) (PHB) production from CO2: model development and process optimization. Biochem Eng J 98:107–116CrossRefGoogle Scholar
  134. Munoz LEA, Riley MR (2008) Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans. Biotechnol Bioeng 100:882–888CrossRefGoogle Scholar
  135. Naranjo JM, Posada JA, Higuita JC, Cardona CA (2013) Valorization of glycerol through the production of biopolymers: the PHB case using Bacillus megaterium. Bioresour Technol 133:38–44PubMedCrossRefPubMedCentralGoogle Scholar
  136. Nargotra P, Vaid S, Bajaj BK (2016) Cellulase Production from Bacillus subtilis SV1 and its application potential for saccharification of ionic liquid pretreated pine needle biomass under one pot consolidated bioprocess. Fermentation 2:19CrossRefGoogle Scholar
  137. Nasirian N, Almassi M, Minaei S, Widmann R (2011) Development of a method for biohydrogen production from wheat straw by dark fermentation. Int J Hydrog Energy 36:411–420CrossRefGoogle Scholar
  138. Nath A, Dixit M, Bandiya A, Chavda S, Desai AJ (2008) Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresour Technol 99:5749–5755PubMedCrossRefPubMedCentralGoogle Scholar
  139. Nguyen TAD, Kim KR, Kim MS, Sim SJ (2010) Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int J Hydrog Energy 35:13392–13398CrossRefGoogle Scholar
  140. Nieto-Dominguez M, de Eugenio LI, York-Duran MJ, Rodriguez-Colinas B, Plou FJ, Chenoll E (2017) Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Food Chem 232:105–13PubMedCrossRefPubMedCentralGoogle Scholar
  141. Noori N, Hamedi H, Kargozari M, Shotorbani PM (2017) Investigation of potential prebiotic activity of rye sprout extract. Food Biosci 19:121–7CrossRefGoogle Scholar
  142. Odier E, Janin G, Monties B (1981) Poplar lignin decomposition by gram-negative aerobic bacteria. Appl Environ Microbiol 41:337–341Google Scholar
  143. Ögel ZB, Yarangümeli K, Dündar H, Ifrij I (2001) Submerged cultivation of Scytalidium thermophilum on complex lignocellulosic biomass for endoglucanase production. Enzyme Microb Technol 28:689–695Google Scholar
  144. Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates—a bacterial biodegradable polymer. Afr J Biotechnol 3:18–24CrossRefGoogle Scholar
  145. Okamoto K, Uchii A, Kanawaku R, Yanase H (2014) Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. SpringerPlus 3:121PubMedPubMedCentralCrossRefGoogle Scholar
  146. Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ (2006) Food-processing enzymes from recombinant microorganisms—a review. Regul Toxicol Pharm 45:144–158Google Scholar
  147. Otieno DO, Ahring BK (2012) A thermochemical pretreatment process to produce xylooligosaccharides (XOS), arabinooligosaccharides (AOS) and mannooligosaccharides (MOS) from lignocellulosic biomasses. Bioresour Technol 112:285–292PubMedCrossRefPubMedCentralGoogle Scholar
  148. Pan C, Zhang S, Fan Y, Hou H (2010) Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int J Hydrog Energy 35:2663–2669CrossRefGoogle Scholar
  149. Panagiotopoulos IA, Bakker RR, de Vrije T, Koukios EG, Claassen PAM (2010) Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrog Energy 35:7738–7747CrossRefGoogle Scholar
  150. Park JH, Yoon JJ, Park HD, Kim YJ, Lim DJ, Kim SH (2011) Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrog Energy 36:13997–14003CrossRefGoogle Scholar
  151. Pattra S, Sangyoka S, Boonmee M, Reungsang A (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrog Energy 33:5256–5265CrossRefGoogle Scholar
  152. Pavlostathis SG, Miller TL, Wolin MJ (1988) Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus. Appl Environ Microbiol 54:2655–2659Google Scholar
  153. Peitersen N (1977) Continuous cultivation of Trichoderma viride on cellulose. Biotechnol Bioeng 19:337–348Google Scholar
  154. Pisco AR, Bengtsson S, Werker A, Reis MAM, Lemos PC (2009) Community structure evolution and enrichment of glycogen accumulating organisms producing polyhydroxyalkanoates from fermented molasses. Appl Environ Microb 75:4676–4686CrossRefGoogle Scholar
  155. Plaza PE, Gallego-Morales LJ, Peñuela-Vásquez M, Lucas S, García-Cubero MT, Coca M (2017) Biobutanol production from brewer’s spent grain hydrolysates by Clostridium beijerinckii. Bioresour Technol 244:166–174PubMedCrossRefGoogle Scholar
  156. Pradhan S, Borah AJ, Poddar MK, Dikshit PK, Rohidas L, Moholkar VS (2017) Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds. Bioresour Technol 242:304–310PubMedCrossRefGoogle Scholar
  157. Rabemanolontsoa H, Kuninori Y, Saka S (2015) High conversion efficiency of Japanese cedar hydrolyzates into acetic acid by co-culture of Clostridium thermoaceticum and Clostridium thermocellum. J Chem Technol Biotechnol 91:1040–1047Google Scholar
  158. Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresource Technol. 199:83–91Google Scholar
  159. Rahnama N, Foo HL, Abdul Rahman NA, Ariff A, Md Shah UK (2014) Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. BMC Biotechnol.  https://doi.org/10.1186/s12896-014-0103-yCrossRefPubMedPubMedCentralGoogle Scholar
  160. Rajagopalan G, Shanmugavelu K, Yang KL (2017) Production of prebiotic-xylooligosaccharides from alkali pretreated mahogany and mango wood sawdust by using purified xylanase of Clostridium strain BOH3. Carbohydr Polym 167:158–66PubMedCrossRefGoogle Scholar
  161. Rajeev K, Reeta S, Rani RS, Mathew M, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34:421–424CrossRefGoogle Scholar
  162. Ratnadewi AAI, Santoso AB, Sulistyaningsih E, Handayani W (2016) Application of cassava peel and waste as raw materials for xylooligosaccharide production using endoxylanase from Bacillus subtilis of soil termite abdomen. Procedia Chem 18:31–38CrossRefGoogle Scholar
  163. Ravindran R, Jaiswal AK (2016) Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioeng 3:30Google Scholar
  164. Reddy SS, Krishnan C (2016) Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function. Food Sci Technol 65:237–245Google Scholar
  165. Rehm BHA (2006) Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: the key role of polyester synthases. Biotechnol Lett 28:207–213PubMedCrossRefPubMedCentralGoogle Scholar
  166. Ren N, Cao G, Wang A, Lee DJ, Guo W, Zhu Y (2008) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 33:6124–6132Google Scholar
  167. Ren N, Wang A, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060PubMedCrossRefPubMedCentralGoogle Scholar
  168. Ren NQ, Cao GL, Guo WQ, Wang AJ, Zhu YH, Liu B, Xu JF (2010) Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 35:2708–2712CrossRefGoogle Scholar
  169. Rodrigues EF, Ficanha AMM, Dallago RM, Treichel H, Reinehr CO, Machado TP, Nunes GB, Colla LM (2017) Production and purification of amylolytic enzymes for saccharification of microalgal biomass. Bioresour Technol 225:134–141PubMedCrossRefPubMedCentralGoogle Scholar
  170. Ruiz E, Romero I, Moya M, Cara C, Vidal JD, Castro E (2013) Dilute sulfuric acid pretreatment of sunflower stalks for sugar production. Bioresour Technol 140:292–298PubMedCrossRefPubMedCentralGoogle Scholar
  171. Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3:235–258CrossRefGoogle Scholar
  172. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353PubMedCrossRefPubMedCentralGoogle Scholar
  173. Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6:2Google Scholar
  174. Samala A, Srinivasan R, Yadav M (2015) Comparison of xylo-oligosaccharides production by autohydrolysis of fibers separated from ground corn flour and DDGS. Food Bioprod Process 94:354–364Google Scholar
  175. Samanta AK, Jayapal N, Jayaram C, Roy S, Kolte AP, Senani S, Sridhar M (2015) Xylooligosaccharides as prebiotics from agricultural by-products: Production and applications. Bioact Carbohydr Diet Fibre 5:62–71CrossRefGoogle Scholar
  176. Samanta AK, Senani S, Kolte AP, Sridhar M, Sampath KT, Jayapal N, Devi A (2012) Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod Process 90:466–474CrossRefGoogle Scholar
  177. Santimano MC, Prabhu NN, Garg S (2009) PHA production using low-cost agro-industrial wastes by Bacillus sp. strain COL1/A6. Res J Microbiol 4:89–96CrossRefGoogle Scholar
  178. Santos CA, Ferreira-Filho JA, O’Donovan A, Gupta VK, Tuohy MG, Souza AP (2017) Production of a recombinant swollenin from Trichodermaharzianum in Escherichia coli and its potential synergistic role in biomass degradation. Microb Cell Fact 16:83.  https://doi.org/10.1186/s12934-017-0697-6CrossRefPubMedPubMedCentralGoogle Scholar
  179. Saratale GD, Saratale RG, Ghodake GS, Jiang YY, Chang JS, Shin HS, Kumar G (2017) Solid state fermentative lignocellulolytic enzymes production characterization and its application in the saccharification of rice waste biomass for ethanol production: an integrated biotechnological approach. J Taiwan Inst Chem Eng (DNLM) 76:51–58CrossRefGoogle Scholar
  180. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27CrossRefGoogle Scholar
  181. Sartori T, Tibolla H, Prigol E, Colla LM, Costa JAV, Bertolin TE (2015) Enzymatic saccharification of lignocellulosic residues by cellulases obtained from solid state fermentation using Trichoderma viride. Biomed Res Int.  https://doi.org/10.1155/2015/342716CrossRefPubMedPubMedCentralGoogle Scholar
  182. Sathiyanarayanan G, Kiran GS, Selvin J, Saibaba G (2013) Optimization of polyhydroxybutyrate production by marine Bacillus megaterium MSBN04 under solid state culture. Int J Biol Macromol 60:253–261PubMedCrossRefPubMedCentralGoogle Scholar
  183. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17PubMedCrossRefPubMedCentralGoogle Scholar
  184. Sharma M, Bajaj BK (2014) Cellulase production from Bacillus subtilis MS 54 and its potential for saccharification of biphasic-acid-pretreated rice straw. J Biobased Mater Bio 8:449–456CrossRefGoogle Scholar
  185. Sharma P, Bajaj BK (2015a) Cost-effective substrates for production of poly-β-hydroxybutyrate by a newly isolated Bacillus cereus PS10. J Environ Biol 36:1297–1304PubMedPubMedCentralGoogle Scholar
  186. Sharma P, Bajaj BK (2015b) Production and characterization of poly-3-hydroxybutyrate from Bacillus cereus PS 10. Int J Biol Macromol 81:241–248PubMedCrossRefPubMedCentralGoogle Scholar
  187. Sharma P, Bajaj BK (2015c) Production of poly-β-hydroxybutyrate by Bacillus cereus PS 10 using biphasic-acid-pretreated rice straw. Int J Biol Macromol 79:704–710PubMedCrossRefPubMedCentralGoogle Scholar
  188. Shi Y, Weimer P (1992) Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Appl Environ Microbiol 58:2583–2591Google Scholar
  189. Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresource Technol 99:6556–6564Google Scholar
  190. Shin CS, Lee JP, Lee JS, Park SC (2000) Enzyme production of Trichoderma reesei Rut C-30 on various lignocellulosic substrates. App Biochem Biotechnol 237–245Google Scholar
  191. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass an overview. Bioresour Technol 199:76–82PubMedCrossRefPubMedCentralGoogle Scholar
  192. Singh S, Bajaj BK (2015) Medium optimization for enhanced production of protease with industrially desirable attributes from Bacillus subtilis K-1. Chem Eng Commun 202:1051–1060Google Scholar
  193. Singh A, Sevda S, Abu RI, Vanbroekhoven K, Rathore D, Pant D (2015a) Biohydrogen Production from lignocellulosic biomass: technology and sustainability. Energies 8:13062–13080CrossRefGoogle Scholar
  194. Singh RD, Banerjee J, Arora A (2015b) Prebiotic potential of oligosaccharides: a focus on xylan derived oligosaccharides. Bioact Carbohydr Diet Fibre 5:19–30CrossRefGoogle Scholar
  195. Singh J, Suhag M, Dhaka A (2015c) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631PubMedCrossRefPubMedCentralGoogle Scholar
  196. Singh S, Anu, Vaid S, Singh P, Bajaj BK (2016) Physicochemical pretreatment of pine needle biomass by design of experiments approach for efficient enzymatic saccharification. J Mater Environ Sci 7:2034–2041Google Scholar
  197. Sinha P, Pandey A (2011) An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrog Energy 36:7460–7478CrossRefGoogle Scholar
  198. Solaiman DKY, Ashby RD, Hotchkiss AT Jr, Foglia TA (2006) Biosynthesis of medium-chain-length Poly(hydroxyalkanoates) from soy molasses. Biotechnol Lett 28:157–162PubMedCrossRefPubMedCentralGoogle Scholar
  199. Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA (2008) Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnol J 6:663–678Google Scholar
  200. Song JH, Jeon CO, Choi MH, Yoon SC, Park W (2008) Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol 18:1408–1415PubMedPubMedCentralGoogle Scholar
  201. Sørensen H (1962) Decomposition of lignin by soil bacteria and complex formation between autoxidized lignin and organic nitrogen compounds. J Gen Microbiol 27:21–34Google Scholar
  202. Su H, Liu G, He M, Tan F (2015) A biorefining process: sequential, combinational lignocellulose pretreatment procedure for improving biobutanol production from sugarcane bagasse. Bioresour Technol 187:149–160PubMedCrossRefPubMedCentralGoogle Scholar
  203. Sukri SSM, Sakinah AMM (2017) Production of high commercial value xylooligosaccharides from meranti wood sawdust using immobilised xylanase. Appl Microbiol Biotechno.  https://doi.org/10.1007/s12010-017-2542-0CrossRefGoogle Scholar
  204. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58PubMedCrossRefPubMedCentralGoogle Scholar
  205. Sun S, Wen J, Sun S, Sun RC (2015) Systematic evaluation of the degraded products evolved from the hydrothermal pretreatment of sweet sorghum stems. Biotechnol Biofuel 8–37Google Scholar
  206. Surek E, Buyukkileci AO (2017) Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr Polym 174:565–71PubMedCrossRefPubMedCentralGoogle Scholar
  207. Systematic Biology-Editorial Board (2014) Syst Biol.  https://doi.org/10.1093/sysbio/syt089CrossRefGoogle Scholar
  208. Tang C, Chen Y, Liu J, Shen T, Cao Z, Shan J, Zhu C, Ying H (2017) Sustainable biobutanol production using alkali-catalyzed organosolv pretreated cornstalks. Ind Crops Prod 95:383–392CrossRefGoogle Scholar
  209. Trchounian K, Poladyan A, Trchounian A (2017) Enhancement of Escherichia coli bacterial biomass and hydrogen production by some heavy metal ions and their mixtures during glycerol vs glucose fermentation at a relatively wide range of pH. Int J Hydrog Energy 42:6590–6597CrossRefGoogle Scholar
  210. Tripathi AD, Srivastava SK, Singh RP (2013) Statistical optimization of physical process variables for bio-plastic (PHB) production by Alcaligenes sp. Biomass Bioenergy 55:243–250CrossRefGoogle Scholar
  211. Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94:579–584PubMedCrossRefPubMedCentralGoogle Scholar
  212. Tye YY, Lee KT, Abdullah WNW, Leh CP (2016) The world availability of nonwood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew Sustain Energy Rev 60:155–72CrossRefGoogle Scholar
  213. Vaid S, Bajaj BK (2017) Production of ionic liquid tolerant cellulase from Bacillus subtilis G2 using agroindustrial residues with application potential for saccharification of biomass under one pot consolidated bioprocess. Waste Biomass Valor 8:949–964CrossRefGoogle Scholar
  214. Vaid S, Nargotra P, Bajaj BK (2017) Consolidated bioprocessing for biofuel-ethanol production from pine needle biomass. Environ Prog Sustain Energy 37:546–552Google Scholar
  215. Valdés-Varela L, Ruas-Madiedo P, Gueimonde M (2017) In vitro fermentation of different fructooligosaccharides by Bifidobacterium strains for the selection of synbiotic combinations. Int J Food Microbiol 242:19–23PubMedCrossRefPubMedCentralGoogle Scholar
  216. Velkovska S, Marten MR, Ollis DF (1997) Kinetic model for batch cellulase production by Trichoderma reesei RUT C30. J Biotechnol 54:83–94Google Scholar
  217. Wadhwa M, Bakshi MPS (2013). In: Makkar HPS (ed) Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. Food and Agriculture Organization, Rome. http://www.fao.org/docrep/018/i3273e/i3273e.pdf
  218. Wang AJ, Ren NQ, Shi YJ, Lee DJ (2008) Bioaugmented hydrogen production from microcrystalline cellulose using co-culture Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int J Hydrog Energy 33:912–917CrossRefGoogle Scholar
  219. Wang X, Liu X, Wang G (2011) Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation F. J Integr Plant Biol 53:246–252PubMedCrossRefPubMedCentralGoogle Scholar
  220. Wang X, Zhang ZT, Wang Y, Wang Y (2016) Production of polyhydroxybuyrate (PHB) from switchgrass pretreated with a radio frequency-assisted heating process. Biomass Bioenergy 94:220–227CrossRefGoogle Scholar
  221. Webb H, Arnott J, Crawford R, Ivanova E (2012) Plastic degradation and its environmental implications with special reference to Poly(ethylene terephthalate). Polymers 5:1–18CrossRefGoogle Scholar
  222. Xia A, Amita J, Muhammad RT, Christiane H, Jerry DM (2016) Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae. Bioresour Technol 205:118–125PubMedCrossRefPubMedCentralGoogle Scholar
  223. Xiao X, Bian J, Peng XP, Xu H, Xiao B, Sun RC (2013) Autohydrolysis of bamboo (Dendrocalamus giganteus Munro) culm for the production of xylo-oligosaccharides. Bioresour Technol 138:63–70PubMedCrossRefPubMedCentralGoogle Scholar
  224. Xu J, Wang X, Hu L, Xia J, Wu Z, Xu N, Dai B , Wu B (2015) A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: Consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid. Bioresource Technol 181:18–25Google Scholar
  225. Xue C, Wang Z, Wang S, Zhang X, Chen L, Mu Y, Bai F (2016) The vital role of citrate buffer in acetone–butanol–ethanol (ABE) fermentation using corn stover and high-efficient product recovery by vapor stripping–vapor permeation (VSVP) process. Biotechnol Biofuel.  https://doi.org/10.1186/s13068-016-0566-2CrossRefGoogle Scholar
  226. Xue C, Zhang X, Wang J, Xiao M, Chen L, Bai F (2017) The advanced strategy for enhancing biobutanol production and high-efficient product recovery with reduced wastewater generation. Biotechnol Biofuel 10:148CrossRefGoogle Scholar
  227. Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S (2011) Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin: NADP + oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci 108:9396–9401PubMedCrossRefPubMedCentralGoogle Scholar
  228. Yadav MP, Hicks KB (2015) Isolation of barley hulls and straw constituents and study of emulsifying properties of their arabinoxylans. Carbohydr Poly 132:529–536CrossRefGoogle Scholar
  229. Yu HY, Li YZ (2015) Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Bio-Med Mater Eng 81:19–25Google Scholar
  230. Yu J, Stahl H (2008) Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour Technol 99:8042–8048PubMedCrossRefPubMedCentralGoogle Scholar
  231. Zhang X, Yu H, Huang H, Lio Y (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegrad 60:159–164Google Scholar
  232. Zhang Y, Sun W, Wang H, Geng A (2013) Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Bioresour Technol 147:307–314PubMedCrossRefPubMedCentralGoogle Scholar
  233. Zhang Z, Liu B, Zhao Z (2012) Efficient acid-catalyzed hydrolysis of cellulose in organic electrolyte solutions. Polym Degrad Stab 97:573–577CrossRefGoogle Scholar
  234. Zheng Y, Pan Z, Zhang R, Wang D, Jenkins B (2008) Non-ionic surfactant and non-catalytic protein treatment on enzymatic hydrolysis of pretreated creeping wild ryegrass Appl Biochem Biotechnol 146:231–248Google Scholar
  235. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresour Technol 101:4992–5002PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Vishal Sharma
    • 1
  • Bilqeesa Bhat
    • 1
  • Mahak Gupta
    • 1
  • Surbhi Vaid
    • 1
  • Shikha Sharma
    • 1
  • Parushi Nargotra
    • 1
  • Satbir Singh
    • 1
  • Bijender Kumar Bajaj
    • 1
  1. 1.School of BiotechnologyUniversity of JammuJammuIndia

Personalised recommendations