Nanotechnology-Based Developments in Biofuel Production: Current Trends and Applications

  • Avinash P. Ingle
  • Priti Paralikar
  • Silvio Silverio da Silva
  • Mahendra RaiEmail author


The extensive consumption of fossil fuels due to ever increasing global population leads to the depletion in its resources all over the world. Moreover, these fuels are playing a major role in creating environmental pollution. As a renewable energy alternative resources, utilization of biomass resources for the production of biofuels attracted a great deal of attention from every corner of the world. Various conventional approaches including chemical, thermochemical, biological methods, etc. have been developed but certain limitations in the smooth application of these methods create pressing need to investigate rapid and environment friendly approaches for sustainable biofuel production. In this context, nanotechnological approaches are found as more promising. Nanotechnologies represent one of the most fascinating techno-scientific revolutions ever undertaken in various sectors including biofuel and bioenergy. Various nanomaterials in the form nanocatalysts play an important role in catalytic degradation of different lignocellulosic biomass into fermentable sugars, which are further used for bioethanol production. Similarly, the production of biodiesel and biogas through nanotechnological approaches has attained a great deal of attention. In this chapter, we have mainly focused on recent trends and applications of nanotechnology in biofuel production. In addition, conventional methods commonly used for biofuel production are also discussed in brief.


Nanotechnology Biofuel Nanomaterials Nanoparticles Biodiesel Bioethanol 


  1. Abdel-Razek SM, Gad MS, Thabet OM (2017) Effect of aluminum oxide nano-particle in Jatropha biodiesel on performance, emissions and combustion characteristics of DI diesel engine. Int J Res Appl Sci Eng Technol 5:358–372CrossRefGoogle Scholar
  2. Abdelsalam E, Samer M, Abdel-Hadi MA, Hassan HE, Badr Y (2015) Effects of CoCl2, NiCl2 and FeCl3 additives on biogas and methane production. Misr J Agric Eng 32(2):843–862Google Scholar
  3. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energy 87:592–598CrossRefGoogle Scholar
  4. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Conver Manage 141:108–119CrossRefGoogle Scholar
  5. Ahmad M, Khan MA, Zafar M, Sultana S (2011) Biodiesel from non-edible oil seeds: a renewable source of Bioenergy. In: Bernardes MADS (ed) Economic effects of biofuel production. InTech Open Publisher, Croatia, pp 259–280Google Scholar
  6. Akia M, Yazdani F, Motaee E, Han D, Arandiyan A (2014) A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Res J 1:16–25CrossRefGoogle Scholar
  7. Alba-Rubio AC, Santamaría-Gonzáles J, Mérida-Robles JM, Moreno-Tost R, Martín-Alonso D, Jiménez-López A, Maireles-Torres P (2010) Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. Catal Today 149:281–287CrossRefGoogle Scholar
  8. Alftren J, Hobley TJ (2013) Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis. Appl Biochem Biotechnol 169:2076–2087CrossRefPubMedGoogle Scholar
  9. Ali A, Mahar RB, Soomro RA, Sherazi STH (2017) Fe3O4 nanoparticles facilitated anaerobic digestion of organic fraction of municipal solid waste for enhancement of methane production. Energy Sources, Part A: Recov Utiliz Environ Effects 39(16):1815–1822CrossRefGoogle Scholar
  10. Alonso DM, Mariscal R, Granados ML, Maireles-Torres P (2009) Biodiesel preparation using Li/CaO catalysts: activation process and homogeneous contribution. Catal Today 143:167–171CrossRefGoogle Scholar
  11. Alves MB, Medeiros FCM, Sousa MH, Rubim JC, Suarez PAZ (2014) Cadmium and tin magnetic nanocatalysts useful for biodiesel production. J Braz Chem Soc 25(12):2304–2313Google Scholar
  12. Antunes FAF, Gaikwad S, Ingle AP, Pandit R, dos Santos JC, Rai M, da Silva SS (2017) Bioenergy and biofuels: nanotechnological solutions for sustainable production. In: Rai M, Da Silva SS (eds) Nanotechnology for bioenergy and biofuel production: green chemistry and sustainable technology. Springer International Publishing, Switzerland, pp 3–18CrossRefGoogle Scholar
  13. Ardebili MS, Ghobadian B, Najafi G, Chegeni A (2011) Biodiesel production potential from edible oil seeds in Iran. Renew Sustain Energy Rev 15(6):3041–3044CrossRefGoogle Scholar
  14. Ben-Iwo J, Manovic V, Longhurst P (2016) Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew Sustain Energy Rev 63:172–192CrossRefGoogle Scholar
  15. Casals E, Barrena R, Garcia A, Gonza´lez E, Delgado L, Busquets-Fite M, Font X, Arbiol J, Glatzel P, Kvashnina K, Sa´nchez A, Puntes V (2014) Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small 10(14):2801–2808CrossRefPubMedGoogle Scholar
  16. Chang F, Zhou Q, Pan H, Liu XF, Zhang H, Xue W, Yang S (2014) Solid mixed-metal-oxide catalysts for biodiesel production: a review. Energy Technol 2:865–873CrossRefGoogle Scholar
  17. Chang KL, Lin YC, Jhang SR, Cheng WL, Chen SC, Mao SY (2017) Rapid jatropha-castor biodiesel production with microwave heating and a heterogeneous base catalyst nano-Ca(OH)2/Fe3O4. Catalysts 7:203. Scholar
  18. Chang RHY, Jang J, Wu KCW (2011) Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose to glucose conversion. Green Chem 13:2844–2850CrossRefGoogle Scholar
  19. Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energ Convers Manage 49:2106–2116CrossRefGoogle Scholar
  20. Duque LEP (2013). Acid-functionalized nanoparticles for biomass hydrolysis. Ph.D. thesis submitted to Department of Biological & Agricultural Engineering College of Engineering, Kansas State University, Manhattan, KansasGoogle Scholar
  21. Feng XM, Karlsson A, Svensson BH, Bertilsson S (2010) Impact of trace element addition on biogas production from food industrial waste-linking process to microflora. FEMS Microbiol Ecol 74:226CrossRefPubMedGoogle Scholar
  22. Feyzi M, Norouzi L (2016) Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production. Renew Energy 94:579–586CrossRefGoogle Scholar
  23. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In: Olsson L. (ed) Biofuels. Advances in biochemical engineering/biotechnology, vol 108. Springer, Berlin, Heidelberg, pp. 41–65Google Scholar
  24. Gill CS, Price BA, Jones CW (2007) Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. J Catal 251:145–152CrossRefGoogle Scholar
  25. Guana Q, Lia Y, Chenb Y, Shia Y, Gua J, Lia B, Miaoa R, Chena Q, Ning P (2017) Sulfonated multi-walled carbon nanotubes for biodiesel production through triglycerides transesterification. RSC Adv 7:7250–7258CrossRefGoogle Scholar
  26. Gupta J, Agarwal M (2015) Preparation and characterization of CaO nanoparticle for biodiesel production. In: AIP Conference Proceedings, vol 1724. pp 020066-1–020066-10.
  27. Hashmi S, Gohar S, Mahmood T, Nawaz U, Farooqi H (2016) Biodiesel production by using CaO-Al2O3 nano catalyst. Int J Eng Res Sci 2(3):43–49Google Scholar
  28. Huang PJ, Chang KL, Hsieh JF, Chen ST (2015) Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe3O4 nanoparticles and ionic liquid. Biomed Res Int 409103:9. Scholar
  29. IEO (2017) International energy outlook. US Energy Information Administration, Washington, DC. Available at Accessed 8 Nov 2017
  30. Ingle AP, Rathod J, Pandit R, da Silva SS, Rai M (2017) Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production. Cellulose 24:5529–5540CrossRefGoogle Scholar
  31. Karimi M (2016) Immobilization of lipase onto mesoporous magnetic nanoparticles for enzymatic synthesis of biodiesel. Biocatal Agri Biotechnol 8:182–188Google Scholar
  32. Kaur M, Ali A (2011) Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from karanja and jatropha oils. Renew Energy 36:2866–2871CrossRefGoogle Scholar
  33. Kim YK, Park SE, Lee H, Yun JY (2014) Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour Technol 159:446–450CrossRefPubMedGoogle Scholar
  34. Kumar A, Jones DD, Hanna MA (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581CrossRefGoogle Scholar
  35. Kumar D, Ali A (2012) Nanocrystalline K–CaO for the transesterification of a variety of feedstocks: structure, kinetics and catalytic properties. Biomass Bioenergy 46:459–468CrossRefGoogle Scholar
  36. Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J. Article ID 631013.
  37. Li H, Chai X, Deng Y, Zhan H, Fu S (2009) Rapid determination of ethanol in fermentation liquor by full evaporation headspace gas chromatography. J Chromatogram A 1216:169–172CrossRefGoogle Scholar
  38. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467CrossRefGoogle Scholar
  39. Luo Z, Zhou J (2012) Thermal conversion of biomass. In: Chen WY, Seiner J, Suzuki T, Lackner M (eds) Handbook of climate change mitigation. Springer Science Business Media, LLC, pp 1002–1037Google Scholar
  40. Madhuvilakku R, Piraman K (2013) Biodiesel synthesis by TiO2–ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresour Technol 150:55–59CrossRefPubMedGoogle Scholar
  41. Malik P, Sangwan A (2012) Nanotechnology: a tool for improving efficiency of bio-energy. J Eng Comp Appl Sci 1(1):37–49Google Scholar
  42. Manasa P, Saroj P, Korrapati N (2017) Immobilization of cellulase enzyme on zinc ferrite nanoparticles in increasing enzymatic hydrolysis on ultrasound-assisted alkaline pretreated Crotalaria juncea biomass. Indian J Sci Technol 10(24):1–7CrossRefGoogle Scholar
  43. Mguni LL, Meijboom R, Jalama K (2012) Biodiesel production over nano-MgO supported on titania. Int J Chem Mol Nucl Mater Metallurg Eng 6(4):380–384Google Scholar
  44. Mishra A, Sardar M (2015) Cellulase assisted synthesis of nano-silver and gold: application as immobilization matrix for biocatalysis. Int J Biol Macromol 77:105–113CrossRefPubMedGoogle Scholar
  45. Mitrovi DM, Janevski JN, Lakovic MS (2012) Primary energy saving using heat storage for biomass heating systems. Therm Sci 16:423–431CrossRefGoogle Scholar
  46. Molina CMM (2013) ZnO nanorods as catalyst for biodiesel production from olive oil. M.Sc. Thesis, University of LouisvilleGoogle Scholar
  47. Mondal M, Goswami S, Ghosh A, Oinam G, Tiwari ON, Das P, Gayen K, Mandal MK, Halder GN (2017) Production of biodiesel from microalgae through biological carbon capture: a review. 3. Biotech 7:99. Scholar
  48. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93CrossRefGoogle Scholar
  49. Moradi G, Mohadesi M, Hojabri Z (2014) Biodiesel production by CaO/SiO2 catalyst synthesized by the sol-gel process. React Kinet Mech Catal 113:169–186CrossRefGoogle Scholar
  50. Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-In S (2009) A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renew Energy 34:1145–1150CrossRefGoogle Scholar
  51. Oyeleke SB, Okansanmi TA (2008) Isolation and characterization of cellulose hydrolysing microorganisms from the rumen of ruminants. Afr J Biotechnol 7(9):125–131Google Scholar
  52. Ozaki J, Takei M, Takakusagi K, Takahashi N (2012) Carbon deposition on a Ni/Al2O3 catalyst in low-temperature gasification using C6- hydrocarbons as surrogate biomass tar. Fuel Process Technol 102:30–34CrossRefGoogle Scholar
  53. Palaniappan K (2017) An overview of applications of nanotechnology in biofuel production. World Appl Sci J 35(8):1305–1311Google Scholar
  54. Pena L, Hohn KL, Li J, Sun XS, Wang D (2014) Synthesis of propyl-sulfonic acid-functionalized nanoparticles as catalysts for cellobiose hydrolysis. J Biomater Nanobiotechnol 5:241–253CrossRefGoogle Scholar
  55. Pena L, Ikenberry M, Hohn KL, Wang D (2012) Acid-functionalized nanoparticles for pretreatment of wheat straw. J Biomater Nanobiotechnol 3:342–352CrossRefGoogle Scholar
  56. Pena L, Ikenberry M, Ware B, Hohn KL, Boyle D, Sun XS, Wang D (2011) Cellobiose hydrolysis using acid-functionalized nanoparticles. Biotechnol Bioprocess Eng 16:1214–1222CrossRefGoogle Scholar
  57. Peng F, Zhang L, Wang H, Lv P, Yu H (2005) Sulfonated carbon nanotubes as a strong protonic acid catalyst. Carbon 43(11):2405–2408CrossRefGoogle Scholar
  58. Puna JF, Gomes JF, Bordado JC, Neiva-Correia MJ, Dias APS (2014) Biodiesel production over lithium modified lime catalysts: activity and deactivation. Appl Catal A 470:451–457CrossRefGoogle Scholar
  59. Puri M, Barrow CJ, Verma ML (2013) Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol 31(4):215–216CrossRefPubMedGoogle Scholar
  60. Puri M, Abraham RE, Barrow CJ (2012) Biofuel production: prospects, challenges and feedstock in Australia. Renew Energy Res Rev 16:6022–6031CrossRefGoogle Scholar
  61. Qiu F, Li Y, Yang D, Li X, Sun P (2011) Heterogeneous solid base nanocatalyst: preparation, characterization and application in biodiesel production. Bioresour Technol 102:4150–4156CrossRefPubMedGoogle Scholar
  62. Rai M, dos Santos JC, Soler MF, Marcelino PRF, Brumano LP, Ingle AP, Gaikwad S, Gade A, da Silva SS (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250CrossRefGoogle Scholar
  63. Reddy ANR, Saleh AA, Islam MS, Hamdan S, Maleque MA (2016) Biodiesel production from crude Jatropha oil using a highly active heterogeneous nanocatalyst by optimizing transesterification reaction parameters. Energy Fuels 30:334–343CrossRefGoogle Scholar
  64. Sanchez-Ramirez J, Martinez-Hernandez JL, Segura-Ceniceros P, Lopez G, Saade H, Medina-Morales MA, Ramos-Gonzalez R, Aguilar CN, Ilyina A (2017) Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng 40(1):9–22 CrossRefPubMedGoogle Scholar
  65. Sarkar D, Shimizu K (2015) An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresour Bioprocess 2: 17.
  66. Sheehan J (2009) Engineering direct conversion of CO2 to biofuel. Nat Biotechnol 27:1128–1129CrossRefPubMedGoogle Scholar
  67. Sheikh RA, Al-Bar OA, Soliman YMA (2016) Biochemical studies on the production of biofuel (bioethanol) from potato peels wastes by Saccharomyces cerevisiae: effects of fermentation periods and nitrogen source concentration. Biotechnol Biotechnol Equip 30:497–505CrossRefGoogle Scholar
  68. Singh D, Bhoi R, Ganesh A, Mahajani S (2014) Synthesis of biodiesel from vegetable oil using supported metal oxide Catalysts. Energy Fuels 28:2743–2753CrossRefGoogle Scholar
  69. Song Q, Mao Y, Wilkins M, Segato F, Prade R (2016) Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion. AIMS Bioeng 3(3):264–276CrossRefGoogle Scholar
  70. Srivastava N, Srivastava M, Manikanta A, Singh P, Ramteke PW, Mishra PK (2017) Nanomaterials for biofuel production using lignocellulosic waste. Environ Chem Lett 15:179–184CrossRefGoogle Scholar
  71. Srivastava N, Srivastava M, Mishra PK, Ramteke PW (2016) Application of ZnO nanoparticles for improving the thermal and pH stability of crude cellulase obtained from Aspergillus fumigatus AA001. Front Microbiol 7: 514.
  72. Tahvildari K, Anaraki YN, Fazaeli R, Mirpanji S, Delrish E (2015) The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil. J Environ Health Sci Eng 13:73.
  73. Tang Y, Ren H, Chang F, Gu X, Zhang J (2017) Nano KF/Al2O3 particles as an efficient catalyst for no-glycerol biodiesel production by coupling transesterification. RSC Adv 7: 5694–5700Google Scholar
  74. Trans DT, Chen CL, Chang JS (2012) Immobilization of lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol 158:112–119Google Scholar
  75. Umdu ES, Tuncer M, Seker E (2009) Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol 100:2828–2831CrossRefPubMedGoogle Scholar
  76. Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013) Immobilization of glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Biores Technol 135:2–6CrossRefGoogle Scholar
  77. Verziu M, Cojocaru B, Hu J, Richards R, Ciuculescu C, Filip P, Parvulescu VI (2008) Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chem 10:373–378CrossRefGoogle Scholar
  78. Wang C, Esteve-Zarzoso B, Mas A (2014) Monitoring of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris (synonym Candida zemplinina) populations during alcoholic fermentation by fluorescence in situ hybridization. J Food Microbiol 191:1–9CrossRefGoogle Scholar
  79. Wang H, Covarrubias J, Prock H, Wu X, Wang D, Bossmann SH (2015) Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J Phys Chem C 119(46):26020–26028CrossRefGoogle Scholar
  80. Xie W, Ma N (2009) Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuels 23:1347–1353CrossRefGoogle Scholar
  81. Xie WL, Wang JL (2014) Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/Poly (styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy Fuels 28:2624–2631CrossRefGoogle Scholar
  82. Yan S, Lu H, Liang B (2008) Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production. Energy Fuels 22:646–651CrossRefGoogle Scholar
  83. Zabeti M, Daud WMAW, Aroua MK (2009) Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology. Appl Catal A 366:154–159CrossRefGoogle Scholar
  84. Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53(9):3448–3454CrossRefGoogle Scholar
  85. Zhang W, Qiu J, Feng H, Zang L, Sakai E (2015) Increase in stability of cellulase immobilized on functionalized magnetic nanospheres. J Magn Magn Mater 375:117–123CrossRefGoogle Scholar
  86. Zhang Z, Donaldson AA, Ma X (2012) Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 30:913–919CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Avinash P. Ingle
    • 1
    • 2
  • Priti Paralikar
    • 1
  • Silvio Silverio da Silva
    • 2
  • Mahendra Rai
    • 1
    Email author
  1. 1.Nanobiotechnology Laboratory, Department of BiotechnologySGB Amravati UniversityAmravatiIndia
  2. 2.Department of Biotechnology, Engineering School of LorenaUniversity of Sao PauloLorenaBrazil

Personalised recommendations