Advertisement

Development of One-Dimensional Triaxial Fibres as Potential Bio-battery Structures

  • Azadeh Mirabedini
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Technological improvements in the development of smaller and lighter smart multi-functional structures have enabled the fabrication of many miniaturized portable electronic devices in recent years. The integration of these organo-electronic components into common textile structures could facilitate free and easy access while allowing a number of smart functionalities such as signalling, sensing, actuating, energy storage or information processing.

References

  1. 1.
    Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14:11957–11992.  https://doi.org/10.3390/s140711957CrossRefPubMedGoogle Scholar
  2. 2.
    Seyedin S, Razal JM, Innis PC, Jeiranikhameneh A, Beirne S, Wallace GG (2015) Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl Mater Interfaces 7:21150–21158.  https://doi.org/10.1021/acsami.5b04892CrossRefPubMedGoogle Scholar
  3. 3.
    Davy J (2012) Advances in military textiles and personal equipment. Woodhead Publishing LimitedGoogle Scholar
  4. 4.
    Jia X, Yang Y, Wang C, Zhao C, Vijayaraghavan R, Macfarlane DR, Forsyth M, Wallace GG (2014) Biocompatible ionic liquid–biopolymer electrolyte-enabled thin and compact magnesium–air batteries. Appl Mater Interfaces 6:21110–21117CrossRefGoogle Scholar
  5. 5.
    Tao J, Liu N, Ma W, Ding L, Li L, Su J, Gao Y (2013) Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure. Sci Rep 3:1–7.  https://doi.org/10.1038/srep02286
  6. 6.
    Nanofiber GP, Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexiblegraphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970CrossRefGoogle Scholar
  7. 7.
    Shim BS, Chen W, Doty C, Xu C, Kotov NA (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8:4151–4157CrossRefPubMedGoogle Scholar
  8. 8.
    Liu J, Li N, Goodman MD, Zhang HG, Epstein ES, Huang B, Pan Z, Kim J, Choi JH, Huang X, Liu J, Hsia KJ, Dillon SJ, Braun PV (2015) Mechanically and chemically robust sandwich-structured C @ Si @ C nanotube array li-ion battery anodes. ACS Nano 9:1985–1994CrossRefPubMedGoogle Scholar
  9. 9.
    Gaikwad AM, Steingart DA, Ng TN, Schwartz DE, Whiting GL (2013) A flexible high potential printed battery for powering printed electronics. Appl Phys Lett 102:233302-1-5.  https://doi.org/10.1063/1.4810974CrossRefGoogle Scholar
  10. 10.
    Wang J, Too CO, Zhou D, Wallace GG (2005) Novel electrode substrates for rechargeable lithium/polypyrrole batteries. J Power Sources 140:162–167.  https://doi.org/10.1016/j.jpowsour.2004.08.040CrossRefGoogle Scholar
  11. 11.
    Wei L, Zhang K, Tao Z, Chen J (2015) Sn–Al core—shell nanocomposite as thin film anode for lithium-ion batteries. J Alloy Compod 644:742–749CrossRefGoogle Scholar
  12. 12.
    Jalili R, Razal JM, Innis PC, Wallace GG (2011) One-step wet-spinning process of poly (3, 4-ethylenedioxy- thiophene): poly ( styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Func Mater 21:3363–3370.  https://doi.org/10.1002/adfm.201100785CrossRefGoogle Scholar
  13. 13.
    Liu Y, Li X, Lu JC (2013) Electrically conductive poly (3, 4-ethylenedioxythiophene)–polystyrene sulfonic acid/polyacrylonitrile composite fibers prepared by wet spinning. J Appl Polym Sci 130:370–374.  https://doi.org/10.1002/app.39174CrossRefGoogle Scholar
  14. 14.
    Zampetti E, Macagnano A, Pantalei S, Bearzotti A (2012) PEDOT:PSS coated titania nanofibers for NO2 detection: Study of humidity effects. Sensors Actuators B Chem.  https://doi.org/10.1016/j.snb.2012.09.107CrossRefGoogle Scholar
  15. 15.
    Esrafilzadeh D, Razal J, Moulton S, Stewart E, Wallace G (2013) Multifunctional conducting fibres with electrically controlled release of ciprofloxacin. J Control Release 169:313–320CrossRefPubMedGoogle Scholar
  16. 16.
    Okuzaki H, Harashina Y, Yan HH (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J 45:256–261.  https://doi.org/10.1016/j.eurpolymj.2008.10.027CrossRefGoogle Scholar
  17. 17.
    Gao Y, Li J, Yang X, Xiang Q, Wang K (2014) Electrochemiluminescence biosensor based on PEDOT-PSS- graphene functionalized ITO electrode. Electroanalysis 26:382–388.  https://doi.org/10.1002/elan.201300470CrossRefGoogle Scholar
  18. 18.
    Moczko E, Istamboulie G, Calas-Blanchard C, Rouillon R, Noguer T (2012) Biosensor employing screen-printed PEDOT:PSS for sensitive detection of phenolic compounds in water. J Polym SciA 50:2286–2292.  https://doi.org/10.1002/pola.26009CrossRefGoogle Scholar
  19. 19.
    Weis M, Otsuka T, Taguchi D, Manaka T, Iwamoto M (2015) Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode. J Appl Phys 117.  https://doi.org/10.1063/1.4918556
  20. 20.
    Hooper KEA, Smith B, Greenwood P, Baker J, Watson TM (2015) Spray PEDOT:PSS coated perovskite with a transparent conducting electrode for low cost scalable photovoltaic devices. Mater Res Innov 19:482–487.  https://doi.org/10.1080/14328917.2015.1105572CrossRefGoogle Scholar
  21. 21.
    Kim HP, Lee SJ, Jang J (2015) Improvement of conversion efficiency of inverted organic photovoltaic with PEDOT: PSS: WOx by thermal annealing. IEEE J PHOTOVOLTAICS 5:897–902CrossRefGoogle Scholar
  22. 22.
    Okuzaki H, Ishihara M (2003) Spinning and characterization of conducting microfibers. Macromol Rapid Commun 24:261–264CrossRefGoogle Scholar
  23. 23.
    Kumar M (1999) Chitin and chitosan fibres: a review. Bull Mater Sci 22:905–915CrossRefGoogle Scholar
  24. 24.
    Majima T, Funakosi T, Iwasaki N, Yamane S-TT, Harada K, Nonaka S, Minami A, Nishimura S-II (2005) Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering. J Orthop Sci 10:302–307.  https://doi.org/10.1007/s00776-005-0891-yCrossRefPubMedGoogle Scholar
  25. 25.
    Niekraszewicz A (2005) Chitosan medical dressings. Fibres Text East Eur 13:16–18Google Scholar
  26. 26.
    Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57.  https://doi.org/10.1080/10717540590889781CrossRefPubMedGoogle Scholar
  27. 27.
    Wan Y, Creber KAM, Peppley B, Bui VT (2003) Ionic conductivity of chitosan membranes. polymer (Guildf) 44:1057–1065CrossRefGoogle Scholar
  28. 28.
    Wang L, Khor E, Wee A, Lim LY (2002) Chitosan-Alginate PEC membrane as a wound dressing: assessment of incisional wound healing. J Biomed Mater Res 63:610–618.  https://doi.org/10.1002/jbm.10382CrossRefPubMedGoogle Scholar
  29. 29.
    Cui CJ, Wu GM, Yang HY, She SF, Shen J, Zhou B, Zhang ZH (2010) A new high-performance cathode material for rechargeable lithium-ion batteries: polypyrrole/vanadium oxide nanotubes. Electrochim Acta 55:8870–8875.  https://doi.org/10.1016/j.electacta.2010.07.087CrossRefGoogle Scholar
  30. 30.
    Kakuda S, Momma T, Osaka T (1995) Ambient-temperature, rechargeable, all-solid lithium/polypyrrole polymer battery. J Electrochem Soc 142:1–2CrossRefGoogle Scholar
  31. 31.
    Huang ZB, Yin GF, Liao XM, Gu JW (2014) Conducting polypyrrole in tissue engineering applications. Front Mater Sci 8:39–45.  https://doi.org/10.1007/s11706-014-0238-8CrossRefGoogle Scholar
  32. 32.
    Jager EWH, Immerstrand C, Magnusson K, Inganas O, Lundstrom I (2000) Biomedical applications of polypyrrole mieroactuators : from single-cell clinic to microrobots. In: Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology. pp 58–61Google Scholar
  33. 33.
    Svirskis D, Travas-sejdic J, Rodgers A, Garg S (2009) Polypyrrole film as a drug delivery system for the controlled release of risperidone. In: AIP Conference Proceeding. pp 36–40Google Scholar
  34. 34.
    Svirskis D, Wright BE, Travas-sejdic J, Rodgers A, Garg S (2010) Sensors and actuators B: chemical evaluation of physical properties and performance over time of an actuating polypyrrole based drug delivery system. Sens Actuators, B 151:97–102.  https://doi.org/10.1016/j.snb.2010.09.042CrossRefGoogle Scholar
  35. 35.
    Hamilton S, Hepher MJ, Sommerville J (2005) Polypyrrole materials for detection and discrimination of volatile organic compounds. Sens Actuators, B 107:424–432.  https://doi.org/10.1016/j.snb.2004.11.001CrossRefGoogle Scholar
  36. 36.
    Qin H, Kulkarni A, Zhang H, Kim H, Jiang D, Kim T (2011) Polypyrrole thin film fiber optic chemical sensor for detection of VOCs. Sens Actuators, B 158:223–228.  https://doi.org/10.1016/j.snb.2011.06.009CrossRefGoogle Scholar
  37. 37.
    Foroughi J, Spinks GM, Wallace GG, Whitten PG (2008) Production of polypyrrole fibres by wet spinning. Synth Met 158:104–107.  https://doi.org/10.1016/j.synthmet.2007.12.008CrossRefGoogle Scholar
  38. 38.
    Rowley NM, Mortimer RJ (2002) New electrochromic materials. Sci Prog 85:243–262CrossRefPubMedGoogle Scholar
  39. 39.
    Cho JW, Jung H (1997) Electrically conducting high-strength aramid composite fibres prepared by vapour-phase polymerization of pyrrole. J Mater Sci 32:5371–5376CrossRefGoogle Scholar
  40. 40.
    Lawal AT, Wallace GG (2014) Vapour phase polymerisation of conducting and non-conducting polymers: a review. Talanta 119:133–143.  https://doi.org/10.1016/j.talanta.2013.10.023CrossRefPubMedGoogle Scholar
  41. 41.
    Xu C, Wang P, Bi X (1995) Continuous vapor phase polymerization of pyrrole. I. electrically conductive composite fiber of polypyrrole with poly(p-phenylene terephthalamide). J Appl Polym Sci 58:2155–2159CrossRefGoogle Scholar
  42. 42.
    Yang Y, Zhang L, Li S, Wang Z, Xu J, Yang W, Jiang Y (2013) Vapor phase polymerization deposition conducting polymer nanocomposites on porous dielectric surface as high performance electrode materials. Nano-Micro Lett 5:40–46CrossRefGoogle Scholar
  43. 43.
    Ateh D, Navsaria H, Vadgama P (2006) Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 3:741–752.  https://doi.org/10.1098/rsif.2006.0141CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chen Liangbi, Chen Wenfeng, Ma Chunhua, Du Dan XC (2011) Electropolymerized multiwalled carbon nanotubes-polypyrrole fiber for solid-phase microextraction and its applications in the determination of pyrethroids. Talanta 84:104–108CrossRefPubMedGoogle Scholar
  45. 45.
    Maziz A, Khaldi A, Persson N, Jager EWH (2015) Soft linear electroactive polymer actuators based on polypyrrole. In: Proc. of SPIE. pp 1–6Google Scholar
  46. 46.
    Granero BAJ, Razal JM, Wallace GG (2008) Spinning carbon nanotube-gel fibers using polyelectrolyte complexation. Adv Func Mater 18:3759–3764.  https://doi.org/10.1002/adfm.200800847CrossRefGoogle Scholar
  47. 47.
    Tian M, Hu X, Qu L, Zhu S, Sun Y, Han G (2016) Versatile and ductile cotton fabric achieved via layer-by-layer self-assembly by consecutive adsorption of graphene doped PEDOT: PSS and chitosan. Carbon N Y 96:1166–1174.  https://doi.org/10.1016/j.carbon.2015.10.080CrossRefGoogle Scholar
  48. 48.
    Jančiauskaitė U, Višnevskij Č, Radzevičius K, Makuška R (2009) Polyampholytes from natural building blocks: synthesis and properties of chitosan-o-alginate copolymers. Chemija 20:128–135Google Scholar
  49. 49.
    Yu D, Branford-White K, Chatterton N, Zhu L, Huang L, Wang B (2011) A modified coaxial electrospinning for preparing fibers from a high concentration polymer solution. Express Polym Lett 5:732–741.  https://doi.org/10.3144/expresspolymlett.2011.71CrossRefGoogle Scholar
  50. 50.
    Warren H, Gately RD, Brien PO, Iii RG (2014) Electrical conductivity, impedance, and percolation behavior of carbon nanofiber and carbon nanotube containing gellan gum hydrogels. J Polym Phys 52:864–871.  https://doi.org/10.1002/polb.23497CrossRefGoogle Scholar
  51. 51.
    Jayakumar R, Prabaharan M, Kumar P, Nair S, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337.  https://doi.org/10.1016/j.biotechadv.2011.01.005CrossRefPubMedGoogle Scholar
  52. 52.
    Shao X, Hunter CJC (2007) Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells. J Biomed Mater Res A 82:702–710.  https://doi.org/10.1002/jbm.aCrossRefGoogle Scholar
  53. 53.
    Chem JM, Jalili R, Razal JM, Wallace GG (2012) Exploiting high quality PEDOT:PSS–SWNT composite formulations for wet-spinning multifunctional fibers. J Mater Chem 22:25174–25182.  https://doi.org/10.1039/c2jm35148jCrossRefGoogle Scholar
  54. 54.
    Brikov A, Markin A, Sukhoverkhov S (2015) Rheological properties of polyethylene glycol solutions and gels. Ind Chem 1:1–5.  https://doi.org/10.4172/2469-9764.1000102CrossRefGoogle Scholar
  55. 55.
    Hadley DW (1975) Rheological nomenclature. Rheol acta 14:1098–1109.  https://doi.org/10.1007/BF01515905CrossRefGoogle Scholar
  56. 56.
    Christie AM, Lilley SJ, Staunton E, Andreev YG (2005) Increasing the conductivity of crystalline polymer electrolytes. Nature 433:50–53.  https://doi.org/10.1038/nature03190.1CrossRefPubMedGoogle Scholar
  57. 57.
    Sadeghi M, Ghasemi N (2012) Synthesis and study on effect of various chemical conditions on the swelling property of collagen-g-poly ( AA- co -IA) superabsorbent hydrogel. Indian J Sci Technol 5:1879–1884Google Scholar
  58. 58.
    Wang X, Li Y, Li J, Wang J, Wang Y, Guo Z (2005) salt effect on the complex formation between polyelectrolyte and oppositely charged surfactant in aqueous solution. J Phys Chem B 109:10807–10812CrossRefPubMedGoogle Scholar
  59. 59.
    Dyakonova MA, Berezkin AV, Kyriakos K, Gkermpoura S, Popescu MT, Filippov SK, Petr S, Papadakis CM (2015) Salt-induced changes in triblock polyampholyte hydrogels: computer simulations and rheological, structural, and dynamic characterization. Macromol 48:8177–8189.  https://doi.org/10.1021/acs.macromol.5b01746CrossRefGoogle Scholar
  60. 60.
    Pamies R, Schmidt RR, López C, García J, Torre D (2010) The influence of mono and divalent cations on dilute and non-dilute aqueous solutions of sodium alginates. Carbohyd Polym 80:248–253.  https://doi.org/10.1016/j.carbpol.2009.11.020CrossRefGoogle Scholar
  61. 61.
    Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S (2006) Properties of collagen/chitosan scaffolds for skin tissue engineering fabrication of collagen/chitosan scaffolds. J Met Mater Miner 16:37–44Google Scholar
  62. 62.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126.  https://doi.org/10.1016/j.progpolymsci.2011.06.003CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cook G (2001) Polyvinyl derivatives. In: Handbook of textile fibres man-made fibres. pp 392–535CrossRefGoogle Scholar
  64. 64.
    Grzeszczuk M, Ozsakarya R (2014) Surface morphology and corresponding electrochemistry of polypyrrole films electrodeposited using a water miscible ionic liquid. RSC Adv 4:22214–22223.  https://doi.org/10.1039/c4ra03497jCrossRefGoogle Scholar
  65. 65.
    Irwin MD, Roberson DA, Olivas RI, Wicker RB, Macdonald E (2011) Conductive polymer-coated threads as electrical interconnects in e-textiles. Fibers Polym 12:904–910.  https://doi.org/10.1007/s12221-011-0904-8CrossRefGoogle Scholar
  66. 66.
    Sarker B, Papageorgiou DG, Silva R, Zehnder T, Gul-e-noor F, Bertmer M, Kaschta J, Detsch R, Boccaccini AR (2014) Fabrication of alginate—gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B 2:1470–1482.  https://doi.org/10.1039/c3tb21509aCrossRefGoogle Scholar
  67. 67.
    Boontheekul T, Kong H, Mooney DJ (2005) Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26:2455–2465.  https://doi.org/10.1016/j.biomaterials.2004.06.044CrossRefPubMedGoogle Scholar
  68. 68.
    Lawrie G, Keen I, Drew B, Chandler-temple A, Rintoul L, Fredericks P, Grøndahl L (2007) Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromol 8:2533–2541CrossRefGoogle Scholar
  69. 69.
    Naderi A, Lindstr T (2015) One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate. RSC Adv 5:85889–85897.  https://doi.org/10.1039/c5ra16183eCrossRefGoogle Scholar
  70. 70.
    Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan—hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506.  https://doi.org/10.1016/j.biomaterials.2008.12.080CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Wang X, Gu Z, Qin H, Li L, Yang X, Yu X (2015) Crosslinking effect of dialdehyde starch (DAS) on decellularized porcine aortas for tissue engineering. Int J Biol Macromol 79:813–821CrossRefPubMedGoogle Scholar
  72. 72.
    Gallignani M, Rondón RA, Ovalles JF, Brunetto MR (2014) Transmission FTIR derivative spectroscopy for estimation of furosemide in raw material and tablet dosage form. Acta Pharm Sin B 4:376–383CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Puvaneswary S, Talebian S, Balaji H, Raman M, Mehrali M, Muhammad A, Hayaty N, Abu B, Kamarul T (2015) Fabrication and in vitro biological activity of BTCP-Chitosan-Fucoidan composite for bone tissue engineering. Carbohydr Polym 134:799–807CrossRefPubMedGoogle Scholar
  74. 74.
    Kumar A, Bahadur R (2014) Iron crosslinked alginate as novel nanosorbents for removal of arsenic ions and bacteriological contamination from water. J Mater Res Technol 3:195–202CrossRefGoogle Scholar
  75. 75.
    Swamy BY, Yun Y (2015) In vitro release of metformin from iron ( III) cross-linked alginate—carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119CrossRefPubMedGoogle Scholar
  76. 76.
    Jalili R, Razal JM, Wallace GG (2013) Wet-spinning of PEDOT:PSS/ functionalized-SWNTs composite: a facile route toward production of strong and highly conducting multifunctional fibers. Nature 3:1–7.  https://doi.org/10.1038/srep03438CrossRefGoogle Scholar
  77. 77.
    Jalili R (2012) Wet-spinning of nanostructured fibres. University of WollongongGoogle Scholar
  78. 78.
    Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681CrossRefPubMedGoogle Scholar
  79. 79.
    Mirabedini A, Foroughi J, Thompson B, Wallace GG (2015) Fabrication of coaxial wet-spun graphene—chitosan bio fibers. Adv Eng Mater 18:284–293.  https://doi.org/10.1002/adem.201500201CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Advanced Technology Centre/Faculty of Science, Engineering and TechnologySwinburne University of TechnologyMelbourneAustralia

Personalised recommendations