Functional Neuroimage

  • Celi Santos Andrade
  • Leandro Tavares Lucato
  • Carlos Alberto Buchpiguel
  • Claudia da Costa Leite


Traditionally, computed tomography (CT) and conventional magnetic resonance imaging (MRI) have played a crucial role in the acute management of traumatic brain injury (TBI). However, several challenges arise in applying neuroimaging methods to predict clinical outcome in patients with a broad range of degree of injuries, especially in individuals who develop persistent symptoms despite minor findings on standard imaging.

Novel anatomical/structural techniques, such as susceptibility-weighted imaging (SWI) and diffusion tensor imaging (DTI), and functional techniques, including resting-state and task-based functional MRI (fMRI), perfusion MRI, proton magnetic resonance spectroscopy (1H-MRS), single photon emission computed tomography (SPECT), and positron-emission tomography (PET), have emerged and have the potential to identify hitherto undetected brain abnormalities in head injury survivors. In this chapter, we review some basic technical aspects of these modern techniques along with their contributions to the understanding of pathophysiology of TBI and their potential use to indicate biomarkers and prognosis. In the future, these modern imaging tools may also aid in selection of patients for targeted therapies.


Traumatic brain injury Diffuse axonal injury Magnetic resonance imaging Susceptibility-weighted imaging Diffusion-weighted imaging Diffusion tensor imaging Functional magnetic resonance imaging Perfusion magnetic resonance imaging Arterial spin labeling Magnetic resonance spectroscopy Single photon emission computed tomography Positron-emission tomography 



Proton magnetic resonance spectroscopy


Axial diffusivity


Arterial spin labeling


Brain Injury Association of America




Cerebral blood flow


Cerebral blood volume






Computed tomography


Chronic traumatic encephalopathy


Diffuse axonal injury


Dynamic susceptibility contrast imaging


Diffusion tensor imaging


Fractional anisotropy (FA)




Fluid-attenuated inversion recovery


Functional MRI


Glasgow coma scale








Mean diffusivity


Magnetic resonance imaging


Mean transit time


N-acetyl aspartate


Positron-emission tomography


11C-Pittsburgh compound B


Regional cerebral blood flow


Radial diffusivity


Region of interest


Resting-state fMRI


Single photon emission computed tomography


Susceptibility-weighted imaging


T2*-weighted gradient-recalled echo


Traumatic brain injury


Tract-based spatial statistics


White matter


  1. 1.
    Corrigan JD, Selassie AW, Orman JA. The epidemiology of traumatic brain injury. J Head Trauma Rehabil. 2010;25(2):72–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Corso P, Finkelstein E, Miller T, Fiebelkorn I, Zaloshnja E. Incidence and lifetime costs of injuries in the United States. Inj Prev. 2006;12(4):212–8.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Shively S, Scher AI, Perl DP, Diaz-Arrastia R. Dementia resulting from traumatic brain injury: what is the pathology? Arch Neurol. 2012;69(10):1245–51.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Little DM, Kraus MF, Joseph J, Geary EK, Susmaras T, Zhou XJ, et al. Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology. 2010;74(7):558–64.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Caeyenberghs K, Leemans A, Leunissen I, Michiels K, Swinnen SP. Topological correlations of structural and functional networks in patients with traumatic brain injury. Front Hum Neurosci. 2013;7.Google Scholar
  6. 6.
    Silver JM, McAllister TW, Arciniegas DB. Depression and cognitive complaints following mild traumatic brain injury. Am J Psychiatr. 2009;166(6):653–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Bruns TJ, Hauser WA. The epidemiology of traumatic brain injury: a review. Epilepsia. 2003;44:2–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Saatman KE, Duhaime A-C, Bullock R, Maas AIR, Valadka A, Manley GT, et al. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719–38.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Currie S, Saleem N, Straiton JA, Macmullen-Price J, Warren DJ, Craven IJ. Imaging assessment of traumatic brain injury. Postgrad Med J. 2016;92(1083):41–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Rosa CM, Luigi B, Antonio D, Nicoletta A, Gloria L, Marco G. Early prognosis after severe traumatic brain injury with minor or absent computed tomography scan lesions. Journal of Trauma-Injury Infection and Critical Care. 2011;70(2):447–51.CrossRefGoogle Scholar
  11. 11.
    Mechtler LL, Shastri KK, Crutchfield KE. Advanced neuroimaging of mild traumatic brain injury. Neurol Clin. 2014;32(1):31.PubMedCrossRefGoogle Scholar
  12. 12.
    DiLeonardi AM, Huh JW, Rahupathi R. Impaired axonal transport and neurofilament compaction occur in separate populations of injured axons following diffuse brain injury in the immature rat. Brain Res. 2009;1263:174–82.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Yang XF, Wang H, Wen L. From myelin debris to inflammatory responses: a vicious circle in diffuse axonal injury. Med Hypotheses. 2011;77(1):60–2.PubMedCrossRefGoogle Scholar
  14. 14.
    Jia Li X-Y, Dong-FuPan D-C. Biomarkers associated with diffuse traumatic axonal injury: exploring pathogenesis, early diagnosis, and prognosis. Journal of Trauma-Injury Infection and Critical Care. 2010;69(6):1610–8.CrossRefGoogle Scholar
  15. 15.
    Ng HK, Mahaliyana RD, Poon WS. The pathological spectrum of diffuse axonal injury in blunt head trauma - assessment with axon and myelin stains. Clin Neurol Neurosurg. 1994;96(1):24–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Mathias JL, Beall JA, Bigler ED. Neuropsychological and information processing deficits following mild traumatic brain injury. J Int Neuropsychol Soc. 2004;10(2):286–97.PubMedCrossRefGoogle Scholar
  17. 17.
    Nakayama N, Okumura A, Shinoda J, Yasokawa YT, Miwa K, Yoshimura SI, et al. Evidence for white matter disruption in traumatic brain injury without macroscopic lesions. Journal of Neurology Neurosurgery and Psychiatry. 2006;77(7):850.CrossRefGoogle Scholar
  18. 18.
    Giugni E, Sabatini U, Hagberg GE, Formisano R, Castriota-Scanderbeg A. Fast detection of diffuse axonal damage in severe traumatic brain injury: comparison of gradient-recalled echo and turbo proton echo planar spectroscopic imaging MRI sequences. Am J Neuroradiol. 2005;26(5):1140–8.PubMedGoogle Scholar
  19. 19.
    Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. Am J Neuroradiol. 1999;20(4):637–42.PubMedGoogle Scholar
  20. 20.
    Yanagawa Y, Sakamoto T, Takasu A, Okada Y. Relationship between maximum intracranial pressure and traumatic lesions detected by T2*-weighted imaging in diffuse axonal injury. J Trauma-Injury Infection Critical Care. 2009;66(1):162–5.CrossRefGoogle Scholar
  21. 21.
    Luccichenti G, Giugni E, Peran P, Cherubini A, Barba C, Bivona U, et al. 3 Tesla is twice as sensitive as 1.5 Tesla magnetic resonance imaging in the assessment of diffuse axonal injury in traumatic brain injury patients. Funct Neurol. 2010;25(2):109–14.PubMedGoogle Scholar
  22. 22.
    Hasiloglu ZI, Albayram S, Selcuk H, Ceyhan E, Delil S, Arkan B, et al. Cerebral microhemorrhages detected by susceptibility-weighted imaging in amateur boxers. Am J Neuroradiol. 2011;32(1):99–102.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu J, Kou Z, Tian Y. Diffuse axonal injury after traumatic cerebral microbleeds: an evaluation of imaging techniques. Neural Regen Res. 2014;9(12):1222–30.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chastain CA, Oyoyo UE, Zipperman M, Joo E, Ashwal S, Shutter LA, et al. Predicting outcomes of traumatic brain injury by imaging modality and injury distribution. J Neurotrauma. 2009;26(8):1183–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Sigmund GA, Tong KA, Nickerson JP, Wall CJ, Oyoyo U, Ashwal S. Multimodality comparison of neuroimaging in pediatric traumatic brain injury. Pediatr Neurol. 2007;36(4):217–26.PubMedCrossRefGoogle Scholar
  26. 26.
    Babikian T, Freier MC, Tong KA, Nickerson JP, Wall CJ, Holshouser BA, et al. Susceptibility weighted imaging: Neuropsychologic outcome and pediatric head injury. Pediatr Neurol. 2005;33(3):184–94.PubMedCrossRefGoogle Scholar
  27. 27.
    Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. Am J Neuroradiol. 2008;29(4):632–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 2002;15(7–8):435–55.PubMedCrossRefGoogle Scholar
  29. 29.
    Karaarslan E, Arslan A. Diffusion weighted MR imaging in non-infarct lesions of the brain. Eur J Radiol. 2008;65(3):402–16.PubMedCrossRefGoogle Scholar
  30. 30.
    Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. Am J Neuroradiol. 2008;29(5):843–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage. 2002;17(3):1429–36.PubMedCrossRefGoogle Scholar
  32. 32.
    Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage. 2003;20(3):1714–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Farquharson S, Tournier JD, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, et al. White matter fiber tractography: why we need to move beyond DTI. J Neurosurg. 2013;118(6):1367–77.PubMedCrossRefGoogle Scholar
  34. 34.
    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31(4):1487–505.PubMedCrossRefGoogle Scholar
  35. 35.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, DiChiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201(3):637–48.PubMedCrossRefGoogle Scholar
  36. 36.
    Spalice A, Nicita F, Papetti L, Ursitti F, Di Biasi C, Parisi P, et al. Usefulness of diffusion tensor imaging and fiber tractography in neurological and neurosurgical pediatric diseases. Childs Nerv Syst. 2010;26(8):995–1002.PubMedCrossRefGoogle Scholar
  37. 37.
    Wilde EA, McCauley SR, Hunter JV, Bigler ED, Chu Z, Wang ZJ, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology. 2008;70(12):948–55.PubMedCrossRefGoogle Scholar
  38. 38.
    Gu L, Li J, Feng D-F, Cheng E-T, Li D-C, Yang X-Q, et al. Detection of white matter lesions in the acute stage of diffuse axonal injury predicts long-term cognitive impairments: a clinical diffusion tensor imaging study. J Trauma Acute Care Surg. 2013;74(1):242–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang JY, Bakhadirov K, Devous MD, Sr., , Abdi H, McColl R, Moore C, et al. Diffusion tensor tractography of traumatic diffuse axonal injury. Arch Neurol 2008;65(5):619–626.PubMedCrossRefGoogle Scholar
  40. 40.
    Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain. 2007;130:2508–19.PubMedCrossRefGoogle Scholar
  41. 41.
    Huisman T, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N, Ozsunar Y, et al. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. Am J Neuroradiol. 2004;25(3):370–6.PubMedGoogle Scholar
  42. 42.
    Spitz G, Maller JJ, O'Sullivan R, Ponsford JL. White matter integrity following traumatic brain injury: the association with severity of injury and cognitive functioning. Brain Topogr. 2013;26(4):648–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Andrade CSZA, Conceição DM, Figueiredo KG, Macruz FBC, Feltrin FS, Otaduy MCG, Leite CC, editors. Longitudinal assessment of diffusion tensor imaging metrics with voxelwise analysis in patients with traumatic brain injury. Chicago: American Society of Neuroradiology; 2015.Google Scholar
  44. 44.
    Amaro E. Applications and design issues in fMRI. Brain Cogn. 2005;57(3):290.CrossRefGoogle Scholar
  45. 45.
    Amaro E, Barker GJ. Study design in functional MRI: basic principles. Brain Cogn. 2006;60(3):220–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. Am J Neuroradiol. 2013;34(10):1866–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Barkhof F, Haller S, Rombouts SARB. Resting-state functional MR imaging: a new window to the brain. Radiology. 2014;272(1):28–48.CrossRefGoogle Scholar
  48. 48.
    McDonald BC, Saykin AJ, McAllister TW. Functional MRI of mild traumatic brain injury (mTBI): progress and perspectives from the first decade of studies. Brain Imaging Behav. 2012;6(2):193–207.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Shumskaya E, Andriessen TMJC, Norris DG, Vos PE. Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology. 2012;79(2):175–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Tang L, Ge Y, Sodickson DK, Miles L, Zhou Y, Reaume J, et al. Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology. 2011;260(3):831–40.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    McGehee BE, Pollock JM, Maldjian JA. Brain perfusion imaging: how does it work and what should i use? J Magn Reson Imaging. 2012;36(6):1257.PubMedCrossRefGoogle Scholar
  52. 52.
    Pasco A, Lemaire L, Franconi F, Lefur Y, Noury F, Saint-Andre J-P, et al. Perfusional deficit and the dynamics of cerebral edemas in experimental traumatic brain injury using perfusion and diffusion-weighted magnetic resonance imaging. J Neurotrauma. 2007;24(8):1321–30.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Garnett MR, Blamire AM, Corkill RG, Rajagopalan B, Young JD, Cadoux-Hudson TAD, et al. Abnormal cerebral blood volume in regions of contused and normal appearing brain following traumatic brain injury using perfusion magnetic resonance imaging. J Neurotrauma. 2001;18(6):585–93.PubMedCrossRefGoogle Scholar
  54. 54.
    Detre JA, Rao HY, Wang DJJ, Chen YF, Wang Z. Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging. 2012;35(5):1026–37.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging. 2015;41(5):1165–80.PubMedCrossRefGoogle Scholar
  56. 56.
    Ge Y, Patel MB, Chen Q, Grossman EJ, Zhang K, Miles L, et al. Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Inj. 2009;23(7–8):666–74.PubMedCrossRefGoogle Scholar
  57. 57.
    Kim J, Whyte J, Patel S, Avants B, Europa E, Wang J, et al. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion fMRI study. J Neurotrauma. 2010;27(8):1399–411.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Maheshwari SR, Fatterpekar GM, Castillo M, Mukherji SK. Proton MR spectroscopy of the brain. Semin Ultrasound CT MRI. 2000;21(6):434–51.CrossRefGoogle Scholar
  59. 59.
    Castillo M, Kwock L, Mukherji SK. Clinical applications of proton MR spectroscopy. Am J Neuroradiol. 1996;17(1):1–15.PubMedGoogle Scholar
  60. 60.
    Brooks WM, Friedman SD, Gasparovic C. Magnetic resonance spectroscopy in traumatic brain injury. J Head Trauma Rehabil. 2001;16(2):149–64.PubMedCrossRefGoogle Scholar
  61. 61.
    Duckworth JL, Stevens RD. Imaging brain trauma. Curr Opin Crit Care. 2010;16(2):92–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Vagnozzi R, Signoretti S, Cristofori L, Alessandrini F, Floris R, Isgro E, et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain. 2010;133:3232–42.PubMedCrossRefGoogle Scholar
  63. 63.
    Cecil KM, Hills EC, Sandel E, Smith DH, McIntosh TK, Mannon LJ, et al. Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg. 1998;88(5):795–801.PubMedCrossRefGoogle Scholar
  64. 64.
    Tollard E, Galanaud D, Perlbarg V, Sanchez-Pena P, Le Fur Y, Abdennour L, et al. Experience of diffusion tensor imaging and H-1 spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Crit Care Med. 2009;37(4):1448–55.PubMedCrossRefGoogle Scholar
  65. 65.
    Hayes JP, Bigler ED, Verfaellie M. Traumatic brain injury as a disorder of brain connectivity. J Int Neuropsychol Soc. 2016;22(2):120–37.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Léveillé J, Demonceau G, De Roo M, Rigo P, Taillefer R, Morgan RA, et al. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, part 2: biodistribution and brain imaging in humans. J Nucl Med. 1989;30(11):1902–10.PubMedGoogle Scholar
  67. 67.
    Raji CA, Tarzwell R, Pavel D, Schneider H, Uszler M, Thornton J, et al. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review. PLoS One. 2014;9(3):e91088.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Pavel D, Jobe T, Devore-Best S, Davis G, Epstein P, Sinha S, et al. Viewing the functional consequences of traumatic brain injury by using brain SPECT. Brain Cogn. 2006;60(2):211–3.PubMedGoogle Scholar
  69. 69.
    Romero K, Lobaugh NJ, Black SE, Ehrlich L, Feinstein A. Old wine in new bottles: validating the clinical utility of SPECT in predicting cognitive performance in mild traumatic brain injury. Psychiatry Res. 2015;231(1):15–24.PubMedCrossRefGoogle Scholar
  70. 70.
    Selwyn R, Hockenbury N, Jaiswal S, Mathur S, Armstrong RC, Byrnes KR. Mild traumatic brain injury results in depressed cerebral glucose uptake: an (18)FDG PET study. J Neurotrauma. 2013;30(23):1943–53.PubMedCrossRefGoogle Scholar
  71. 71.
    Humayun MS, Presty SK, Lafrance ND, Holcomb HH, Loats H, Long DM, et al. Local cerebral glucose abnormalities in mild closed head injured patients with cognitive impairments. Nucl Med Commun. 1989;10:335–44.PubMedCrossRefGoogle Scholar
  72. 72.
    Wilde EA, Bouix S, Tate DF, Lin AP, Newsome MR, Taylor BA, et al. Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: state of the art and potential benefits. Brain Imaging Behav. 2015;9(3):367–402.PubMedCrossRefGoogle Scholar
  73. 73.
    Buchsbaum MS, Simmons AN, DeCastro A, Farid N, Matthews SC. Clusters of low (18)F-Fluorodeoxyglucose uptake voxels in combat veterans with traumatic brain injury and post-traumatic stress disorder. J Neurotrauma. 2015;32(22):1736–50.PubMedCrossRefGoogle Scholar
  74. 74.
    Byrnes KR, Wilson CM, Brabazon F, von Leden R, Jurgens JS, Oakes TR, et al. FDG-PET imaging in mild traumatic brain injury: a critical review. Front Neuroenerg. 2014;5:13.CrossRefGoogle Scholar
  75. 75.
    Scott G, Ramlackhansingh AF, Edison P, Hellyer P, Cole J, Veronese M, et al. Amyloid pathology and axonal injury after brain trauma. Neurology. 2016;86(9):821–8.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Barrio JR, Small GW, Wong KP, Huang SC, Liu J, Merrill DA, et al. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci U S A. 2015;112(16):E2039–47.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Velázquez A, Ortega M, Rojas S, González-Oliván FJ, Rodríguez-Baeza A. Widespread microglial activation in patients deceased from traumatic brain injury. Brain Inj. 2015;29(9):1126–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Celi Santos Andrade
    • 1
  • Leandro Tavares Lucato
    • 1
    • 2
  • Carlos Alberto Buchpiguel
    • 1
  • Claudia da Costa Leite
    • 1
    • 2
  1. 1.Department of Radiology and OncologySchool of Medicine – University of São PauloSão PauloBrazil
  2. 2.LIM 44-Laboratory of Magnetic Resonance Imaging in NeuroradiologySão PauloBrazil

Personalised recommendations