Skip to main content

Bang-Bang Property of Optimal Controls

  • Chapter
  • First Online:
Time Optimal Control of Evolution Equations

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE-SC,volume 92))

  • 843 Accesses

Abstract

In this chapter, we will study the bang-bang property of some time optimal control problems. The bang-bang property of such a problem says, in plain language, that any optimal control reaches the boundary of the corresponding control constraint set at almost every time. This property not only is mathematically interesting, but also has important applications. For instance, the uniqueness of time optimal control is an immediate consequence of the bang-bang property in certain cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Apraiz, L. Escauriaza, Null-control and measureable sets. ESAIM Control Optim. Calc. Var. 19, 239–254 (2013)

    Article  MathSciNet  Google Scholar 

  2. J. Apraiz, L. Escauriaza, G. Wang, C. Zhang, Observability inequalities and measurable sets. J. Eur. Math. Soc. 16, 2433–2475 (2014)

    Article  MathSciNet  Google Scholar 

  3. V. Barbu, The time optimal control of Navier-Stokes equations. Syst. Control Lett. 30, 93–100 (1997)

    Article  MathSciNet  Google Scholar 

  4. R. Bellman, I. Glicksberg, O. Gross, On the “bang-bang” control problem. Q. Appl. Math. 14, 11–18 (1956)

    Article  MathSciNet  Google Scholar 

  5. T. Duyckaerts, X. Zhang, E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré, Anal. Non Linéaire 25, 1–41 (2008)

    Google Scholar 

  6. L. Escauriaza, F.J. Fernández, S. Vessella, Doubling properties of caloric functions. Appl. Anal. 85, 205–223 (2006)

    Article  MathSciNet  Google Scholar 

  7. L. Escauriaza, S. Montaner, C. Zhang, Observation from measurable sets for parabolic analytic evolutions and applications. J. Math. Pures et Appl. 104, 837–867 (2015)

    Article  MathSciNet  Google Scholar 

  8. L. Escauriaza, S. Montaner, C. Zhang, Analyticity of solutions to parabolic evolutions and applications. SIAM J. Math. Anal. 49, 4064–4092 (2017)

    Article  MathSciNet  Google Scholar 

  9. H.O. Fattorini, Time-optimal control of solution of operational differential equations. J. SIAM Control 2, 54–59 (1964)

    MATH  Google Scholar 

  10. H.O. Fattorini, Infinite Dimensional Linear Control Systems, the Time Optimal and Norm Optimal Problems, North-Holland Mathematics Studies, vol. 201 (Elsevier Science B.V., Amsterdam, 2005)

    Google Scholar 

  11. K. Kunisch, L. Wang, Time optimal control of the heat equation with pointwise control constraints. ESAIM Control Optim. Calc. Var. 19, 460–485 (2013)

    Article  MathSciNet  Google Scholar 

  12. K. Kunisch, L. Wang, Bang-bang property of time optimal controls of semilinear parabolic equation. Discrete Contin. Dyn. Syst. 36, 279–302 (2016)

    Article  MathSciNet  Google Scholar 

  13. G. Lebeau, L. Robbiano, Contrôle exacte l’équation de la chaleur (French). Comm. Partial Differ. Equ. 20, 335–356 (1995)

    Article  Google Scholar 

  14. G. Lebeau, E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Rational Mech. Anal. 141, 297–329 (1998)

    Article  MathSciNet  Google Scholar 

  15. J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations (Springer, New York, 1971)

    Book  Google Scholar 

  16. J. Lohéac, M. Tucsnak, Maximum principle and bang-bang property of time optimal controls for Schrodinger-type systems. SIAM J. Control Optim. 51, 4016–4038 (2013)

    Article  MathSciNet  Google Scholar 

  17. Q. Lü, Bang-bang principle of time optimal controls and null controllability of fractional order parabolic equations. Acta Math. Sin. (Engl. Ser.) 26, 2377–2386 (2010)

    Article  MathSciNet  Google Scholar 

  18. V.J. Mizel, T.I. Seidman, An abstract bang-bang principle and time optimal boundary control of the heat equation. SIAM J. Control Optim. 35, 1204–1216 (1997)

    Article  MathSciNet  Google Scholar 

  19. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44 (Springer, New York, 1983)

    Google Scholar 

  20. K.D. Phung, G. Wang, An observability estimate for parabolic equations from a measurable set in time and its application. J. Eur. Math. Soc. 15, 681–703 (2013)

    Article  MathSciNet  Google Scholar 

  21. K.D. Phung, L. Wang, C. Zhang, Bang-bang property for time optimal control of semilinear heat equation. Ann. Inst. H. Poincaré, Anal. Non Linéaire 31, 477–499 (2014)

    Google Scholar 

  22. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, The Mathematical Theory of Optimal Processes, Translated from the Russian by K. N. Trirogoff, ed. by L. W. Neustadt, (Interscience Publishers Wiley, New York, London, 1962)

    Google Scholar 

  23. C.C. Poon, Unique continuation for parabolic equations. Commun. Partial Differ. Equ. 21, 521–539 (1996)

    Article  MathSciNet  Google Scholar 

  24. E.J.P.G. Schmidt, The “bang-bang” principle for the time optimal problem in boundary control of the heat equation. SIAM J. Control Optim. 18, 101–107 (1980)

    Article  MathSciNet  Google Scholar 

  25. S. Vessella, A continuous dependence result in the analytic continuation problem. Forum Math. 11, 695–703 (1999)

    Article  MathSciNet  Google Scholar 

  26. G. Wang, L−null controllability for the heat equation and its consequence for the time optimal control problem. SIAM J. Control Optim. 47, 1701–1720 (2008)

    Article  MathSciNet  Google Scholar 

  27. G. Wang, L. Wang, The bang-bang principle of time optimal controls for the heat equation with internal controls. Syst. Control Lett. 56, 709–713 (2007)

    Article  MathSciNet  Google Scholar 

  28. L. Wang, Q. Yan, Time optimal controls of semilinear heat equation with switching control. J. Optim. Theory Appl. 165, 263–278 (2015)

    Article  MathSciNet  Google Scholar 

  29. L. Wang, Q. Yan, Bang-bang property of time optimal null controls for some semilinear heat equation. SIAM J. Control Optim. 54, 2949–2964 (2016)

    Article  MathSciNet  Google Scholar 

  30. G. Wang, C. Zhang, Observability inequalities from measurable sets for some abstract evolution equations. SIAM J. Control Optim. 55, 1862–1886 (2017)

    Article  MathSciNet  Google Scholar 

  31. G. Wang, Y. Zhang, Decompositions and bang-bang problems. Math. Control Relat. Fields 7, 73–170 (2017)

    Article  MathSciNet  Google Scholar 

  32. G. Wang, Y. Xu, Y. Zhang, Attainable subspaces and the bang-bang property of time optimal controls for heat equations. SIAM J. Control Optim. 53, 592–621 (2015)

    Article  MathSciNet  Google Scholar 

  33. J. Yong, H. Lou, A Concise Course on Optimal Control Theory (Chinese) (Higher Education Press, Beijing, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, G., Wang, L., Xu, Y., Zhang, Y. (2018). Bang-Bang Property of Optimal Controls. In: Time Optimal Control of Evolution Equations. Progress in Nonlinear Differential Equations and Their Applications(), vol 92. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-95363-2_6

Download citation

Publish with us

Policies and ethics