Schizophrenia: A Complex Mental Illness

  • María Graciela López OrdieresEmail author


Schizophrenia is a complex mental illness that affects 1% of the world population without differences of gender, race, or social status that requires effective antipsychotic treatments producing minimal adverse effects. Schizophrenia is thought as a disconnection disorder of functional brain networks that produces three essential types of clinical manifestations: psychotic symptoms, negative symptoms, and cognitive impairment. The former include loss of contact with reality, including delusions and hallucinations. Negative symptoms are states of deficit in which the basic behavior is diminished or absent. Cognitive impairment includes disturbance in attention, concentration, learning and memory, and operational functions. Schizophrenia is a neurodevelopmental disorder which is the result of multiple factor interactions such as viral illnesses during pregnancy, environmental agents, immunological dysfunction, or obstetric complications. Like other major psychiatric disorders, schizophrenia is also associated with abnormalities in multiple epigenetic mechanisms, resulting in altered gene expression during development and adulthood.

Several lines of evidence have studied anatomical and functional modifications and altered neurotransmission systems involved in the schizophrenia. This knowledge has been used to achieve better understanding of the disease and the possibility of developing new drugs; many of them have recently been approved for the routine clinical use.


Dopamine D2 receptors Schizophrenia Antipsychotic agents Therapeutics treatments 



Financial support was provided by CONICET and Universidad de Buenos Aires, Argentina.

Conflict of Interest

There is no known conflict of interest associated with this publication.


  1. 1.
    Novella E, Huertas R. El síndrome de Kraepelin-Bleuler-Schneider. Clín Salud. 2010;3:205–19.Google Scholar
  2. 2.
    Langfeldt G. Schizophrenia: diagnosis and prognosis. Syst Res Behav Sci. 1969;14:173–82.CrossRefGoogle Scholar
  3. 3.
    Strakowski SM. Diagnostic validity of schizophreniform disorder. Am Psychiatry. 1994;151(6):815–24.CrossRefGoogle Scholar
  4. 4.
    Crow TJ. The two-syndrome concept: origins and current status. Schizophr Bull. 1985;11:471–88.CrossRefGoogle Scholar
  5. 5.
    Liddle P, Friston K, Frith C, Frackowiak R. Cerebral blood flow and mental processes in schizophrenia. J R Soc Med. 1992;85:224–7.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Van den Heuvel M, Sporns O, Collin G, Scheewe T, Mandl R, Cahn W, Goñi J, Hulshoff PH, Kahn R. Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiat. 2013;70:783–92.CrossRefGoogle Scholar
  7. 7.
    Stephan KE, Friston KJ, Frith CD. Disconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35(3):509–27.CrossRefGoogle Scholar
  8. 8.
    Mueser KT, McGurk SR. Schizophrenia. Lancet. 2004;363:2063–72.CrossRefGoogle Scholar
  9. 9.
    Addinton J, Cornblatt BA, Cadenhead KS, Cannon TD, McGlashan T, Perkins DO, Seidman LJ, Tsuang MT, Walker EF, Woods SW, Heinssen R. At clinical high risk for psychosis: outcome for nonconverters. Am J Psychiatry. 2011;168(8):800–5.CrossRefGoogle Scholar
  10. 10.
    Schlosser DA, Jacobson S, Chen Q, Sugar CA, Niendam TA, Li G, Bearden CE, Cannon TD. Recovery from an at-risk state: clinical and functional outcomes of putatively prodromal youth who do not develop psychosis? Schizophr Bull. 2012;38(6):1225–33.CrossRefGoogle Scholar
  11. 11.
    Gargiulo PA, Landa de Gargiulo AI. Glutamate and modeling of schizophrenia symptoms: review of our findings: 1990–2014. Pharmacol Rep. 2014;66:343–52.CrossRefGoogle Scholar
  12. 12.
    López Mato A, Vazquez G. Esquizofrenias. In: López Mato A, editor. Psiconeuroinmunoendocrinlogía II. Buenos Aires: Editorial Polemos; 2002.Google Scholar
  13. 13.
    Lieberman JA, Sheitman BB, Kinon BJ. Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology. 1997;17(4):205–29.CrossRefGoogle Scholar
  14. 14.
    Cantor-Graae E. The contribution of social factors to the development of schizophrenia: a review of recent findings. Can J Psychiatr. 2007;52(5):277–86.CrossRefGoogle Scholar
  15. 15.
    Van Winkel R, Stefanis NC, Myin-Germeys I. Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction. Schizophr Bull. 2008;34(6):1095–105.CrossRefGoogle Scholar
  16. 16.
    Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry. 2005;10(1):40–68.CrossRefGoogle Scholar
  17. 17.
    Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophr Bull. 2009;35(3):549–62.CrossRefGoogle Scholar
  18. 18.
    Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A. 2001;98(12):6917–22.CrossRefGoogle Scholar
  19. 19.
    Wang H, Xu J, Lazarovici P, Zheng W. Dysbindin-1 involvement in the etiology of schizophrenia. Int J Mol Sci. 2017;22:18.Google Scholar
  20. 20.
    Martinez Cué C, Flórez J. Fármacos antipsicóticos neurolépticos. In: Flórez J, editor. Farmacología Humana. Madrid: Elsevier-Mason Ed; 2014. p. 519–32.Google Scholar
  21. 21.
    Shorter KR, Miller BH. Epigenetic mechanisms in schizophrenia. Prog Biophys Mol Biol. 2015;118(1–2):1–7.CrossRefGoogle Scholar
  22. 22.
    Korkmaz A, Oter S, Seyrek M, Topal T. Molecular, genetic and epigenetic pathways of peroxynitrite-induced cellular toxicity. Interdiscip Toxicol. 2009;2(4):219–28.CrossRefGoogle Scholar
  23. 23.
    Tremolizzo L, Doueiri S, Dong E, Grayson DR, Davis J, Pinna G, Tueting P, Rodriguez-Menendez V, Costa E, Guidotti A. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry. 2005;57:500–9.CrossRefGoogle Scholar
  24. 24.
    Weaver IC, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ, Szyf M. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci. 2005;25:11045–54.CrossRefGoogle Scholar
  25. 25.
    Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry. 2010;15(12):1176–89.CrossRefGoogle Scholar
  26. 26.
    Lodge DJ, Grace AA. Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci. 2011;32(9):507–13.CrossRefGoogle Scholar
  27. 27.
    Goldman-Rakic PS. Regional and cellular fractionation of working memory. Proc Natl Acad Sci U S A. 1996;93:13473–80.CrossRefGoogle Scholar
  28. 28.
    Weinberger DR, Gallhofer B. Cognitive function in schizophrenia. Int Clin Psychopharmacol. 1997;12(Suppl 4):S29–36.CrossRefGoogle Scholar
  29. 29.
    Ingvar DH, Franzén G. Distribution of cerebral activity in chronic schizophrenia. Lancet. 1974;2(7895):1484–6.CrossRefGoogle Scholar
  30. 30.
    Tamminga CA. The neurobiology of cognition in schizophrenia. J Clin Psychiatry. 2006;67(Suppl 9):9–13.PubMedGoogle Scholar
  31. 31.
    Husted JA, Greenwood C, Bassett AS. Re: familial aggregation of clinical and neurocognitive features in sibling pairs with and without schizophrenia. Schizophr Res. 2010;116(2–3):289–90.CrossRefGoogle Scholar
  32. 32.
    Heckers S. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus. 2001;11(5):520–8.CrossRefGoogle Scholar
  33. 33.
    Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry. 2000;48(7):627–40.CrossRefGoogle Scholar
  34. 34.
    Medoff DR, Holcomb HH, Lahti AC, Tamminga CA. Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus. 2001;11(5):543–50.CrossRefGoogle Scholar
  35. 35.
    Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S, Seaward J, McKenna P, Chua SE, Schnorr L, Jones T, Frackowiak RSJ. A functional neuroanatomy of hallucinations in schizophrenia. Nature. 1995;378:176–9.CrossRefGoogle Scholar
  36. 36.
    Ewing SG, Grace AA. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia. Schizophr Res. 2013;143(2–3):377–83.CrossRefGoogle Scholar
  37. 37.
    Heckers S, Konradi C. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res. 2015;167(0):4–11.CrossRefGoogle Scholar
  38. 38.
    Perez-Costas E, Melendez-Ferro M, Roberts RC. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem. 2010;113(2):287–302.CrossRefGoogle Scholar
  39. 39.
    Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;15:81–8.CrossRefGoogle Scholar
  40. 40.
    Carlsson M, Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia – implications for schizophrenia and Parkinson’s disease. Trends Neurosci. 1990;13(7):272–6.CrossRefGoogle Scholar
  41. 41.
    Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44(7):660–9.CrossRefGoogle Scholar
  42. 42.
    Keshavan MS, Tandon R, Boutros NN, Nasrallah HA. Schizophrenia, “just the facts”: what we know in 2008 part 3: neurobiology. Schizophr Res. 2008;106(2–3):89–10.CrossRefGoogle Scholar
  43. 43.
    Carlsson A, Lindqvit M. Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (Copenh). 1963;20:140–4.CrossRefGoogle Scholar
  44. 44.
    Matthysse S. Antipsychotic drug actions: a clue to the neuropathology of schizophrenia? Fed Proc. 1973;32(2):200–5.PubMedGoogle Scholar
  45. 45.
    Snyder SH. The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry. 1976;133(2):197–202.CrossRefGoogle Scholar
  46. 46.
    Ashcroft GW, Blackwood GW, Besson JA, Palomo T, Waring HL. Positive and negative schizophrenic symptoms and the role of dopamine. Br J Psychiatry. 1981;138:268–9.CrossRefGoogle Scholar
  47. 47.
    Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 1991;41(1):1–24.CrossRefGoogle Scholar
  48. 48.
    Weinberger DR, Lipska BK. Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res. 1995;16(2):87–110.CrossRefGoogle Scholar
  49. 49.
    Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci. 2002;25:409–32.CrossRefGoogle Scholar
  50. 50.
    Chavez Noriega L, Marino M, Schaffhauser H, Campbell U, Conn P. Novel potential therapeutics for schizophrenia: focus on the modulation of metabotropic glutamate receptor function. Curr Neuropharmacol. 2005;3:9–34.CrossRefGoogle Scholar
  51. 51.
    Stefani MR, Groth K, Moghaddam B. Glutamate receptors in the rat medial prefrontal cortex regulates set-shifting ability. Behav Neurosci. 2003;117(4):728–37.CrossRefGoogle Scholar
  52. 52.
    Wang H, Pickel VM. Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol. 2002;442(4):392–404.CrossRefGoogle Scholar
  53. 53.
    Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther. 2008;117(2):232–43.CrossRefGoogle Scholar
  54. 54.
    D’Souza MS, Markou A. Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict Sci Clin Pract. 2011;6:4–16.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Dean B, McLeod M, Keriakous D, McKenzie J, Scarr E. Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry. 2002;7(10):1083–91.CrossRefGoogle Scholar
  56. 56.
    Edelstein P, Schultz JR, Hirschowitz J, Kanter DR, Garver DL. Physostigmine and lithium response in the schizophrenias. Am J Psychiatry. 1981;138(8):1078–81.CrossRefGoogle Scholar
  57. 57.
    Spalding TA, Trotter C, Skjaerbaek N, Messier TL, Currier EA, Burstein ES, Li D, Hacksell U, Brann MR. Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol Pharmacol. 2002;61(6):1297–302.CrossRefGoogle Scholar
  58. 58.
    Sur C, Kinney G. Selective targeting of muscarinic receptor: novel therapeutic. Approaches for psychotic disorders. Curr Neuropharmacol. 2005;3:63–71.CrossRefGoogle Scholar
  59. 59.
    De Luca V, Wang H, Squassina A, Wong G, Yeomans J, Kennedy J. Linkage of M5 muscarinic, alpha 7 nicotinic receptor genes on 15q13 to schizophrenia. Neuropsychobiology. 2004;50:124–7.CrossRefGoogle Scholar
  60. 60.
    Leonard S, Gault J, Adams C, Breese CR, Rollins Y, Adler LE, Olincy A, Freedman R. Nicotinic receptors, smoking and schizophrenia. Restor Neurol Neurosci. 1998;12(2–3):195–201.PubMedGoogle Scholar
  61. 61.
    Martin-Ruiz CM, Haroutunian VH, Long P, Young AH, Davis KL, Perry EK, Court JA. Dementia rating and nicotinic receptor expression in the prefrontal cortex in schizophrenia. Biol Psychiatry. 2003;54(11):1222–33.CrossRefGoogle Scholar
  62. 62.
    Krenz I, Kalkan D, Wevers A, de Vos RA, Steur EN, Lindstrom J, Pilz K, Nowacki S, Schütz U, Moser N, Witter B, Schröder H. Parvalbumin-containing interneurons of the human cerebral cortex express nicotinic acetylcholine receptor proteins. J Chem Neuroanat. 2001;21(3):239–46.CrossRefGoogle Scholar
  63. 63.
    La Crosse AL, Olive MF. Neuropeptide systems and schizophrenia. CNS Neurol Disorder Drug Targets. 2013;12(5):619–32.CrossRefGoogle Scholar
  64. 64.
    Boules MM, Fredrickson P, Muehlmann AM, Richelson E. Elucidating the role of neurotensin in the pathophysiology and management of major mental disorders. Behav Sci (Basel). 2014;4(2):125–53.CrossRefGoogle Scholar
  65. 65.
    López Ordieres MG, Rodríguez de Lores Arnaiz G. Neurotensin in central neurotransmission. In: Rodríguez de Lores Arnaiz G, editor. Function of neuropeptides at central nervous system. Trivandrum: Ed. Research Signpost; 2009. p. 1–30.Google Scholar
  66. 66.
    López Ordieres MG, Alvarez Juliá A, Kemmling A, Rodriguez de Lores Arnaiz G. Postnatal nitric oxide inhibition modifies neurotensin effect on ATPase activity. Neurochem Res. 2011;36(12):2278–86.CrossRefGoogle Scholar
  67. 67.
    Maggio R, Aloise G, Silvano E, Rossi M, Millan MJ. Heterodimerization of dopamine receptors: new insights into functional and therapeutic significance. Parkinsonism Relat Disord. 2009;15(Suppl 4):S2–7.CrossRefGoogle Scholar
  68. 68.
    Fuxe K, Tarakanov A, Romero Fernandez A, Ferraro L, Tanganelli S, Filip. Diversity and bias through receptor–receptor interactions in GPCR heteroreceptor complexes. Focus on examples from dopamine D2 receptor heteromerization. Front Endocrinol. et al., 2014;71:1–11.Google Scholar
  69. 69.
    Fuxe K, Marcellino D, Woods AS, Giuseppina L, Antonelli T, Ferraro L, et al. Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. J Neural Transm. 2009;116:923–39.CrossRefGoogle Scholar
  70. 70.
    Jufé G. Psicofarmacología Práctica. Buenos Aires: Ed. Polifemos; 2012. p. 1–633.Google Scholar
  71. 71.
    Caraci F, Leggio GM, Salomone S, Drago F. New drugs in psychiatry: focus on new pharmacological targets. F1000Res. 2017;6:39.CrossRefGoogle Scholar
  72. 72.
    Arif SA, Mitchel MM. Iloperidone: a new drug for the treatment of schizophrenia. Am J Health Syst Pharm. 2011;68(4):301–8.CrossRefGoogle Scholar
  73. 73.
    Loebel A, Citrome L. Lurasidone: a novel antipsychotic agent for the treatment of schizophrenia and bipolar depression. Br J Psych Bull. 2015;39(5):237–41.Google Scholar
  74. 74.
    Scarff JR. Brexpiprazole: a new treatment option for schizophrenia. Innov Clin Neurosci. 2016;13(7–8):26–9.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Kim S, Solari H, Weiden PJ, Bishop JR. Paliperidone palmitate injection for the acute and maintenance treatment of schizophrenia in adults. Patient Prefer Adherence. 2012;6:533–45.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Balaraman R, Ghandi H. Asenapine, a new sublingual atypical antipsychotic. J Pharmacol Pharmacother. 2010;1(1):60–1.CrossRefGoogle Scholar
  77. 77.
    Davidson M, Saoud J, Staner C, Noel N, Luthringer E, Werner S, Reilly J, Schaffhauser JY, Rabinowitz J, Weiser M, Luthringer R. Efficacy and safety of MIN-101: a 12-week randomized, double-blind, placebo-controlled trial of a new drug in development for the treatment of negative symptoms in schizophrenia. Am J Psychiatry. 2017;174(12):1195–20.CrossRefGoogle Scholar
  78. 78.
    Walker AG, Wenthur CJ, Xiang Z, Rook JM, Emmitte KA, Niswender CM, Lindsley CW, Conn PJ. Metabotropic glutamate receptor 3activation is required for long-term depression in medial prefrontal cortex and fear extinction. Proc Natl Acad Sci U S A. 2015;112(4):1196–201.CrossRefGoogle Scholar
  79. 79.
    Griebel G, Pichat P, Boulay D, Naimoli V, Potestio L, Featherstone R, Sahni S, Defex H, Desvignes C, Slowinski F, Vigé X, Bergis OE, Sher R, Kosley R, Kongsamut S, Black MD, Varty GB. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia. Sci Rep. 2016;6:35320.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Exact and Natural SciencesUniversity of BelgranoBuenos AiresArgentina
  2. 2.Faculty of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations