Advertisement

The Role of Interneurons in Cognitive Impairment in Schizophrenia

  • Ane Murueta-Goyena Larrañaga
  • José Vicente Lafuente Sánchez
  • Harkaitz Bengoetxea Odriozola
Chapter

Abstract

Several findings indicate that schizophrenia is associated with multiple abnormalities in different subtypes of interneurons, which result in a loss of inhibitory control of pyramidal cell activity. Perturbed excitatory/inhibitory balance or maladaptive disinhibition leads to cognitive impairment, a core disturbance of schizophrenia. Interneurons are crucial for governing the complex interactions between principal cells to coordinate spatiotemporal firing patterns of excitatory action potentials, thereby regulating network operations, controlling plastic periods, and generating brain oscillations. Increasing body of evidence suggests that these inhibitory cells are essential for normal perceptual processing and cognitive behavior. Although the precise contribution of interneurons to learning and memory needs to be elucidated, evidence support the notion that interneurons might be engaged in different stages of acquisition and storage of information. In this chapter, we review the current state of knowledge regarding the role of interneurons at microcircuit and network levels to shed new light on their contribution to neuronal computations for perceptual processing and their influence on high-order cognitive functions. We discuss how the functional alteration of inhibitory neurons might be responsible for the cognitive impairment in schizophrenia, suggesting that interneurons could be interesting candidates for therapeutic interventions to improve core cognitive symptoms of schizophrenia.

Keywords

GABAergic cells Learning and memory Inhibition 

Notes

Acknowledgments

This work has been partially supported by the Basque Government (GIC 901/16) and by the University of the Basque Country UPV/EHU (UFI 11/32, PPG17/51 and EHU 14/33).

Disclosures

The authors have no proprietary or commercial interest in any devices or drugs that are involved in this manuscript.

References

  1. 1.
    Le Magueresse C, Monyer H. GABAergic interneurons shape the functional maturation of the cortex. Neuron. 2013;77(3):388–405.PubMedCrossRefGoogle Scholar
  2. 2.
    Jacob J. Cortical interneuron dysfunction in epilepsy associated with autism spectrum disorders. Epilepsia. 2016;57(2):182–93.PubMedCrossRefGoogle Scholar
  3. 3.
    Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci. 2003;23(15):6315–26.PubMedCrossRefGoogle Scholar
  4. 4.
    Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Hashimoto T, Arion D, Unger T, Maldonado-Avilés JG, Morris HM, Volk DW, Mirnics K, Lewis DA. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry. 2008;13(2):147–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Moore CI, Carlen M, Knoblich U, Cardin JA. Neocortical interneurons: from diversity, strength. Cell. 2010;142(2):189–93.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Roux L, Buzsáki G. Tasks for inhibitory interneurons in intact brain circuits. Neuropharmacology. 2015;88:10–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Young JZ. A model of the brain. London: Oxford University Press. 1964.Google Scholar
  9. 9.
    Burkhalter A. Many specialists for suppressing cortical excitation. Front Neurosci. 2008;2(2):155–67.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Buzsáki G. Feed-forward inhibition in the hippocampal formation. Prog Neurobiol. 1984;22(2):131–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Pouille F, Scanziani M. Routing of spike series by dynamic circuits in the hippocampus. Nature. 2004;429(6993):717–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Wehr M, Zador AM. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature. 2003;426(6965):442–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Butler JL, Paulsen O. Hippocampal network oscillations – recent insights from in vitro experiments. Curr Opin Neurobiol. 2015;31:40–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Lovett-Barron M, Turi GF, Kaifosh P, Lee PH, Bolze F, Sun XH, Nicoud JF, Zemelman BV, Sternson SM, Losonczy A. Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci. 2012;15(3):423–30, S1–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Basu J, Srinivas KV, Cheung SK, Taniguchi H, Huang ZJ, Siegelbaum SA. A cortico-hippocampal learning rule shapes inhibitory microcircuit activity to enhance hippocampal information flow. Neuron. 2013;79(6):1208–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Freund TF, Katona I. Perisomatic inhibition. Neuron. 2007;56(1):33–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Li Y, Stam FJ, Aimone JB, Goulding M, Callaway EM, Gage FH. Molecular layer perforant path-associated cells contribute to feed-forward inhibition in the adult dentate gyrus. Proc Natl Acad Sci U S A. 2013;110(22):9106–11.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Vida I, Frotscher M. A hippocampal interneuron associated with the mossy fiber system. Proc Natl Acad Sci U S A. 2000;97(3):1275–80.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cope DW, Maccaferri G, Márton LF, Roberts JD, Cobden PM, Somogyi P. Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus. Neuroscience. 2002;109(1):63–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Miles R. Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. J Physiol. 1990;428:61–77.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pinto DJ, Brumberg JC, Simons DJ. Circuit dynamics and coding strategies in rodent somatosensory cortex. J Neurophysiol. 2000;83(3):1158–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Gulyás AI, Hájos N, Freund TF. Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci. 1996;16(10):3397–411.PubMedCrossRefGoogle Scholar
  23. 23.
    Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature. 2013;503(7477):521–4.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Tyan L, Chamberland S, Magnin E, Camiré O, Francavilla R, David LS, et al. Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuit. J Neurosci. 2014;34(13):4534–47.PubMedCrossRefGoogle Scholar
  25. 25.
    Somogyi P, Klausberger T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol. 2005;562(Pt 1):9–26.PubMedCrossRefGoogle Scholar
  26. 26.
    Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J Neurosci. 2006;26(19):5069–82.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lee SH, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, Masmanidis SC, Taniguchi H, Huang ZJ, Zhang F, Boyden ES, Deisseroth K, Dan Y. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature. 2012;488(7411):379–83.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kaplan ES, Cooke SF, Komorowski RW, Chubykin AA, Thomazeau A, Khibnik LA, Gavornik JP, Bear MF. Contrasting roles for parvalbumin-expressing inhibitory neurons in two forms of adult visual cortical plasticity. Elife. 2016;5. pii: e11450.Google Scholar
  29. 29.
    Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M. A neural circuit for spatial summation in visual cortex. Nature. 2012;490(7419):226–31.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Knierim JJ, van Essen DC. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol. 1992;67(4):961–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Hamm JP, Yuste R. Somatostatin interneurons control a key component of mismatch negativity in mouse visual cortex. Cell Rep. 2016;16(3):597–604.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Butler PD, Silverstein SM, Dakine SC. Visual perception and its impairment in schizophrenia. Biol Psychiatry. 2008;64(1):40–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gargiulo PÁ, Landa De Gargiulo AI. Glutamate and modeling of schizophrenia symptoms: review of our findings: 1990–2014. Pharmacol Rep. 2014;66(3):343–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Yoon JH, Maddock RJ, Rokem A, Silver MA, Minzenberg MJ, Ragland JD, Carter CS. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci. 2010;30(10):3777–81.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pouille F, Marin-Burgin A, Adesnik H, Atallah BV, Scanziani M. Input normalization by global feedforward inhibition expands cortical dynamic range. Nat Neurosci. 2009;12(12):1577–85.PubMedCrossRefGoogle Scholar
  36. 36.
    Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsáki G. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci. 2012;15(5):769–75.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Couey JJ, Witoelar A, Zhang SJ, Zheng K, Ye J, Dunn B, Czajkowski R, Moser MB, Moser EI, Roudi Y, Witter MP. Recurrent inhibitory circuitry as a mechanism for grid formation. Nat Neurosci. 2013;16(3):318–24.PubMedCrossRefGoogle Scholar
  38. 38.
    de Almeida L, Idiart M, Lisman JE. The input-output transformation of the hippocampal granule cells: from grid cells to place fields. J Neurosci. 2009;29(23):7504–12.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Leutgeb JK, Leutgeb S, Moser MB, Moser EI. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science. 2007;315(5814):961–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Buetfering C, Allen K, Monyer H. Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat Neurosci. 2014;17(5):710–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Mesbah-Oskui L, Georgiou J, Roder JC. Hippocampal place cell and inhibitory neuron activity in disrupted-in-schizophrenia-1 mutant mice: implications for working memory deficits. NPJ Schizophr. 2015;1:1:15011.Google Scholar
  42. 42.
    Mohammadi A, Hesami E, Kargar M, Shams J. Detecting allocentric and egocentric navigation deficits in patients with schizophrenia and bipolar disorder using virtual reality. Neuropsychol Rehabil. 2017;3(3):317–30.Google Scholar
  43. 43.
    O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993;3(3):317–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Singer W. Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol. 1993;55:349–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Lisman J. The theta/gamma discrete phase code occurring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus. 2005;15(7):913–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Yamamoto J, Suh J, Takeuchi D, Tonegawa S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell. 2014;157(4):845–57.PubMedCrossRefGoogle Scholar
  47. 47.
    Zylla MM, Zhang X, Reichinnek S, Draguhn A. Both M. Cholinergic plasticity of oscillating neuronal assemblies in mouse hippocampal slices. PLoS One. 2013;8:e88071.CrossRefGoogle Scholar
  48. 48.
    Hu H, Gan J, Jonas P. Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science. 2014;345(6196):1255263.PubMedCrossRefGoogle Scholar
  49. 49.
    Gallinat J, Winterer G, Herrmann CS, Senkowski D. Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol. 2004;115(8):1863–74.PubMedCrossRefGoogle Scholar
  50. 50.
    Kwon JS, O’Donnell BF, Wallenstein GV, Greene RW, Hirayasu Y, Nestor PG. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry. 1999;56:1001–5.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wynn JK, Light GA, Breitmeyer B, Nuechterlein KH, Green MF. Event-related gamma activity in schizophrenia patients during a visual backward-masking task. Am J Psychiatry. 2005;162(12):2330–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Williams LM, Whitford TJ, Nagy M, Flynn G, Harris AW, Silverstein SM, Gordon E. Emotion-elicited gamma synchrony in patients with first-episode schizophrenia: a neural correlate of social cognition outcomes. J Psychiatry Neurosci. 2009;34(4):303–13.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Haenschel C, Bittner RA, Waltz J, Haertling F, Wibral M, Singer W, Linden DE, Rodriguez E. Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci. 2009;29(30):9481–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Csicsvari J, Jamieson B, Wise KD, Buzsáki G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron. 2003;37(2):311–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Buzsáki G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25(10):1073–188.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Suh J, Foster DJ, Davoudi H, Wilson MA, Tonegawa S. Impaired hippocampal ripple-associated replay in a mouse model of schizophrenia. Neuron. 2013;80:484–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Morris HM, Hashimoto T, Lewis DA. Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb Cortex. 2008;18(7):1575–87.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Rudenko A, Seo J, Hu J, Su SC, de Anda FC, Durak O, Ericsson M, Carlén M, Tsai LH. Loss of cyclin-dependent kinase 5 from parvalbumin interneurons leads to hyperinhibition, decreased anxiety, and memory impairment. J Neurosci. 2015;35(6):2372–83.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Murray AJ, Woloszynowska-Fraser MU, Ansel-Bollepalli L, Cole KL, Foggetti A, Crouch B, Riedel G, Wulff P. Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility. Sci Rep. 2015;5:16778.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kim H, Ährlund-Richter S, Wang X, Deisseroth K, Carlén M. Prefrontal parvalbumin neurons in control of attention. Cell. 2016;164(1–2):208–18.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Murray AJ, Sauer JF, Riedel G, McClure C, Ansel L, Cheyne L, Bartos M, Wisden W, Wulff P. Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory. Nat Neurosci. 2011;14(3):297–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Yi F, Ball J, Stoll KE, Satpute VC, Mitchell SM, Pauli JL, Holloway BB, Johnston AD, Nathanson NM, Deisseroth K, Gerber DJ, Tonegawa S, Lawrence JJ. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. J Physiol. 2014;592(16):3463–94.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Carlén M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D, Rühlmann C, Jones SR, Deisseroth K, Sheng M, Moore CI, Tsai LH. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry. 2012;17(5):537–48.PubMedCrossRefGoogle Scholar
  64. 64.
    Konradi C, Yang CK, Zimmerman EI, Lohmann KM, Gresch P, Pantazopoulos H, Berretta S, Heckers S. Hippocampal interneurons are abnormal in schizophrenia. Schizophr Res. 2011;131(1–3):165–73.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ludwig M, Pittman QJ. Talking back: dendritic neurotransmitter release. Trends Neurosci. 2003;26(5):255–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Kits KS, Mansvelder HD. Regulation of exocytosis in neuroendocrine cells: spatial organization of channels and vesicles, stimulus-secretion coupling, calcium buffers and modulation. Brain Res Brain Res Rev. 2000;33(1):78–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Baraban SC, Tallent MK. Interneuron diversity series: interneuronal neuropeptides – endogenous regulators of neuronal excitability. Trends Neurosci. 2004;27(3):135–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Liguz-Lecznar M, Urban-Ciecko J, Kossut M. Somatostatin and somatostatin-containing neurons in shaping neuronal activity and plasticity. Front Neural Circ. 2016;10:48.Google Scholar
  69. 69.
    Guillou JL, Micheau J, Jaffard R. Effects of intrahippocampal injections of somatostatin and cysteamine on spatial discrimination learning in mice. Psychobiology. 1993;21(4):265–71.Google Scholar
  70. 70.
    Dutar P, Vaillend C, Viollet C, Billard JM, Potier B, Carlo AS, Ungerer A, Epelbaum J. Spatial learning and synaptic hippocampal plasticity in type 2 somatostatin receptor knock-out mice. Neuroscience. 2002;112(2):455–66.PubMedCrossRefGoogle Scholar
  71. 71.
    Tuboly G, Vécsei L. Somatostatin and cognitive function in neurodegenerative disorders. Mini-Rev Med Chem. 2013;13(1):34–46.PubMedCrossRefGoogle Scholar
  72. 72.
    Dournaud P, Delaere P, Hauw JJ, Epelbaum J. Differential correlation between neurochemical deficits, neuropathology, and cognitive status in Alzheimer’s disease. Neurobiol Aging. 1995;16(5):817–23.PubMedCrossRefGoogle Scholar
  73. 73.
    Vécsei L, Király C, Bollók I, Nagy A, Varga J, Penke B, Telegdy G. Comparative studies with somatostatin and cysteamine in different behavioral tests on rats. Pharmacol Biochem Behav. 1984;21(6):833–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Lamirault L, Guillou JL, Micheau J, Jaffard R. Intrahippocampal injections of somatostatin dissociate acquisition from the flexible use of place responses. Eur J Neurosci. 2001;14(3):567–70.PubMedCrossRefGoogle Scholar
  75. 75.
    Cole KLH. GABAergic inhibition in learning and memory: examples from the cerebellum and hippocampus. Doctoral thesis. University of Aberdeen. 2012.Google Scholar
  76. 76.
    Andrews-Zwilling Y, Gillespie AK, Kravitz AV, Nelson AB, Devidze N, Lo I, Yoon SY, Bien-Ly N, Ring K, Zwilling D, Potter GB, Rubenstein JL, Kreitzer AC, Huang Y. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval. PLoS One. 2012;7(7):e40555.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kim D, Jeong H, Lee J, Ghim JW, Her ES, Lee SH, Jung MW. Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory. Neuron. 2016;92(4):902–15.PubMedCrossRefGoogle Scholar
  78. 78.
    Kvitsiani D, Ranade S, Hangya B, Taniguchi H, Huang JZ, Kepecs A. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature. 2013;498(7454):363–6.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Urban-Ciecko J, Barth AL. Somatostatin-expressing neurons in cortical networks. Nat Rev Neurosci. 2016;17(7):401–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, Lüthi A. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature. 2011;480(7377):331–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Letzkus JJ, Wolff SB, Lüthi A. Disinhibition, a circuit mechanism for associative learning and memory. Neuron. 2015;88(2):264–76.PubMedCrossRefGoogle Scholar
  82. 82.
    Gambino F, Holtmaat A. Spike-timing-dependent potentiation of sensory surround in the somatosensory cortex is facilitated by deprivation-mediated disinhibition. Neuron. 2012;75(3):490–502.PubMedCrossRefGoogle Scholar
  83. 83.
    van Versendaal D, Rajendran R, Saiepour MH, Klooster J, Smit-Rigter L, Sommeijer JP, De Zeeuw CI, Hofer SB, Heimel JA, Levelt CN. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron. 2012;74(2):374–83.PubMedCrossRefGoogle Scholar
  84. 84.
    Wolff SB, Gründemann J, Tovote P, Krabbe S, Jacobson GA, Müller C, Herry C, Ehrlich I, Friedrich RW, Letzkus JJ, Lüthi A. Amygdala interneuron subtypes control fear learning through disinhibition. Nature. 2014;509(7501):453–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Cybulska-Klosowicz A, Posluszny A, Nowak K, Siucinska E, Kossut M, Liguz-Lecznar M. Interneurons containing somatostatin are affected by learning-induced cortical plasticity. Neuroscience. 2013;254:18–25.PubMedCrossRefGoogle Scholar
  86. 86.
    Brown MT, Tan KR, O’Connor EC, Nikonenko I, Muller D, Lüscher C. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature. 2012;492(7429):452–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Golding NL, Staff NP, Spruston N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature. 2002;418(6895):326–31.PubMedCrossRefGoogle Scholar
  88. 88.
    Kampa BM, Letzkus JJ, Stuart GJ. Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity. Trends Neurosci. 2007;30(9):456–63.PubMedCrossRefGoogle Scholar
  89. 89.
    Lovett-Barron M, Kaifosh P, Kheirbek MA, Danielson N, Zaremba JD, Reardon TR, Turi GF, Hen R, Zemelman BV, Losonczy A. Dendritic inhibition in the hippocampus supports fear learning. Science. 2014;343(6173):857–63.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Jasinska M, Siucinska E, Cybulska-Klosowicz A, Pyza E, Furness DN, Kossut M, Glazewski S. Rapid, learning-induced inhibitory synaptogenesis in murine barrel field. J Neurosci. 2010;30(3):1176–84.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Tokarski K, Urban-Ciecko J, Kossut M, Hess G. Sensory learning-induced enhancement of inhibitory synaptic transmission in the barrel cortex of the mouse. Eur J Neurosci. 2007;26(1):134–41.PubMedCrossRefGoogle Scholar
  92. 92.
    Donato F, Chowdhury A, Lahr M, Caroni P. Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning. Neuron. 2015;85(4):770–86.PubMedCrossRefGoogle Scholar
  93. 93.
    Caroni P. Regulation of parvalbumin basket cell plasticity in rule learning. Biochem Biophys Res Commun. 2015;460(1):100–3.PubMedCrossRefGoogle Scholar
  94. 94.
    Lagler M, Ozdemir AT, Lagoun S, Malagon-Vina H, Borhegyi Z, Hauer R, Jelem A, Klausberger T. Divisions of identified parvalbumin-expressing basket cells during working memory-guided decision making. Neuron. 2016;91(6):1390–401.PubMedCrossRefGoogle Scholar
  95. 95.
    Donato F, Rompani SB, Caroni P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature. 2013;504(7479):272–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ane Murueta-Goyena Larrañaga
    • 1
  • José Vicente Lafuente Sánchez
    • 1
  • Harkaitz Bengoetxea Odriozola
    • 1
  1. 1.LaNCE Laboratory of Clinical and Experimental Neuroscience, Department of Neuroscience, Faculty of Medicine and NurseryUniversity of the Basque Country UPV/EHULeioaSpain

Personalised recommendations