Advertisement

Anthocyanins in Nutrition: Biochemistry and Health Benefits

  • María Inés De Rosas
  • Leonor DeisEmail author
  • Liliana Martínez
  • Martín Durán
  • Emiliano Malovini
  • Juan Bruno Cavagnaro
Chapter

Abstract

Regarding nutrition, the new trend of consumption includes vegetables and fruits in the diet and concludes that new preference is to natural foods. Red grape berries constitute a great candidate to this target because of their high phenolic content, including anthocyanins which play a major role in their nutraceutical properties. Anthocyanins are responsible for many of the red-orange to blue-violet colors present in plant tissues. These compounds are excellent antioxidants because they are easily oxidized under stress circumstances and thus contribute to the fruits’ and vegetables’ protective effect regarding degenerative and chronic diseases. Anthocyanins are synthesized via the phenylpropanoid pathway, and their biosynthesis is regulated not only genetically but also physiologically. They are naturally produced by plants in response to biotic and abiotic stresses. There are five common anthocyanins in grapevine: cyanidin, peonidin, delphinidin, petunidin, and malvidin. Their accumulation varies with the cultivar; the environmental conditions, especially light intensity and temperature; plant growth regulators; and vineyard management practices. Climate change may affect the metabolic composition of grapevine such as anthocyanins content of grape berry and so the final wine quality. The evidence linking consumption of anthocyanins from the diet to beneficial human health outcomes has been presented over multiple experimental platforms and disease targets. When superior animals consume these functional foods or wine, the anthocyanins are absorbed in the digestive tract. It has been shown that the possible transporter of anthocyanins is associated to a bilitranslocase in the gastric epithelium. Due to their many benefits to human health, anthocyanins should be present in all human diets.

Keywords

Anthocyanins Vitis vinifera Wine Human health 

References

  1. 1.
    Giampieri F, Alvarez-Suarez JM, Battino M. Strawberry and human health: effects beyond antioxidant activity. J Agric Food Chem. 2014;62:3867–76.CrossRefGoogle Scholar
  2. 2.
    Howard LR, Brownmiller C, Prior RL. Improved color and anthocyanin retention in strawberry puree by oxygen exclusion. J Berry Res. 2014;4:107–16.CrossRefGoogle Scholar
  3. 3.
    Prior RL, Wu X. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res. 2006;40:1014–28.CrossRefGoogle Scholar
  4. 4.
    Heinonen IM, Meyer AS, Frankel EN. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J Agric Food Chem. 1998;46(10):4107–12.CrossRefGoogle Scholar
  5. 5.
    Record IR, Dreosti IE, McInerney JK. Changes in plasma antioxidant status following consumption of diets high or low in fruit and vegetables or following dietary supplementation with an antioxidant mixture. Br J Nutr. 2001;85(4):459–64.CrossRefGoogle Scholar
  6. 6.
    Qiu Z, Wang X, Gao J, Guo Y, Huang Z, Du Y. The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS One. 2016;11(3):e0151067.CrossRefGoogle Scholar
  7. 7.
    Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death. Plant Physiol. 2006;141(2):384–90.CrossRefGoogle Scholar
  8. 8.
    Kumpulainen JT, Salonen JT. In natural antioxidants and anticarcinogens in nutrition, health and disease. Cambridge, UK: Royal Society of Chemistry; 1998.Google Scholar
  9. 9.
    Satue-Garcia MT, Heinonen M, Frankel EN. Anthocyanins as antioxidants on human low-density lipoprotein and lecithinliposome systems. J Agric Food Chem. 1997;45:3362–7.CrossRefGoogle Scholar
  10. 10.
    Wang H, Cao G, Prior RL. The oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem. 1997;45:304–9.CrossRefGoogle Scholar
  11. 11.
    Macheix JJ, Fleuriet A, Billot J. Fruit phenolics. Boca Raton: CRC Press; 1990. p. 41–54.Google Scholar
  12. 12.
    Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Verries C, Souquet J-M, González-Neves G, Gil G, Barreiro L. Influence of grape variety on the extraction of anthocyanins during the fermentation on skins. Eur Food Res Technol. 2008;226:1349–55.CrossRefGoogle Scholar
  13. 13.
    Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot. 2011;62:2465–83.  https://doi.org/10.1093/jxb/erq442.CrossRefPubMedGoogle Scholar
  14. 14.
    Boss PK, Davies C, Robinson SP. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv shiraz grape berries and the implications for pathway regulation. Plant Physiol. 1996;111(4):1059–66.CrossRefGoogle Scholar
  15. 15.
    Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon-induced mutations in grape skin color. Science. 2004;304(5673):982.CrossRefGoogle Scholar
  16. 16.
    Castañeda-Ovando A, Pacheco-Hernández ML, Páez-Hernández ME, Rodríguez J, Galán-Vidal CA. Chemical studies of anthocyanins: a review. Food Chem. 2009;113:859–71.CrossRefGoogle Scholar
  17. 17.
    Flanzy. Enología: Fundamentos científicos y Tecnológicos. Madrid: AMV Ediciones-Mundiprensa; 2000.Google Scholar
  18. 18.
    Wallace TC. Anthocyanins in cardiovascular disease. Adv Nutr. 2011;2:1–7.CrossRefGoogle Scholar
  19. 19.
    Sreelakshmi Y, Sharma R. Differential regulation of phenylalanine ammonia lyase activity and protein level by light in tomato seedlings. Plant Physiol Biochem. 2008;46(4):444–51.CrossRefGoogle Scholar
  20. 20.
    Matus JT, Loyola R, Vega A, Peña-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot. 2009;60(3):853–67.CrossRefGoogle Scholar
  21. 21.
    Kliewer WM, Torres ER. Effect of controlled day and night temperatures on grape coloration. Am J Enol Vitic. 1972;23(2):71–7.Google Scholar
  22. 22.
    Deis L, de Rosas MI, Cavagnaro JB. High temperature and abscisic acid modified the profile of anthocyanins in grape (Vitis vinífera L.). J life Sci. 2012;7:758–65.Google Scholar
  23. 23.
    Kataoka I, Sugiura N, Utsunomiya N, Tomana T. Effect of abscisic acid and defoliation on anthocyanin accumulation in Kyoko grapes (Vitis vinifera L x V. Labrusca bailey). Vitis. 1982;21:325–32.Google Scholar
  24. 24.
    Kataoka I, Kubo Y, Sugiura A, Tomana T. Effects of temperature, cluster shading and some growth regulators on L-phenylalanine ammonia-lyase activity and anthocyanin accumulation in Black grapes. Mem Coll Agric Kyoto Univ. 1984;124:35–44.Google Scholar
  25. 25.
    Deis L. Effect of abscisic acid and water deficit on polyphenol metabolism and oxidative stress of Vitis vinifera (cv Cabernet Sauvignon). PhD Thesis. Argentina: National University of Cuyo; 2009.Google Scholar
  26. 26.
    Deis L, Cavagnaro B, Bottini R, Wuilloud R, Silva MF. Water deficit and exogenous ABA significantly affect grape and wine phenolic composition under in field and in-vitro conditions. Plant Growth Regul. 2011;65:11.CrossRefGoogle Scholar
  27. 27.
    Malovini E. Efecto en campo, del aumento de la temperatura, déficit hídrico y aplicación de ácido abscísico y salicílico, en Vitis vinifera L. cv. Malbec. PhD Thesis. Argentina: National University of Cuyo; 2017.Google Scholar
  28. 28.
    Deis L, Cavagnaro JB. Effect of water stress in grape berries cabernet sauvignon (Mendoza, Argentine) during four years consecutives. J Life Sci. 2013;9:65.Google Scholar
  29. 29.
    Smart RE. Vine manipulation to improve wine grape quality. In: Webb AD, editor. Proceedings University of California, Davis, grape and wine centennial symposium 1980. Davis: University of California; 1982. p. 362–75.Google Scholar
  30. 30.
    Mazza G, Miniat E. Anthocyanins in fruits, vegetables and grains. 362 Seiten, zahlr. Abb. und Tab. Boca Raton: CRC Press; 1993.Google Scholar
  31. 31.
    Downey MO, Dokoozlian NK, Krstic MP. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic. 2006;57:257–68.Google Scholar
  32. 32.
    Haselgrove L, Botting D, Van Heeswijck R, Hoj P, Dry P, Ford C. Canopy microclimate and berry composition: the effect of bunch exposure on the phenolic composition of Vitis vinifera L. cv Shiraz grape berries, Aust. J. Grape Wine Res. 2000;6:141–9.CrossRefGoogle Scholar
  33. 33.
    Keller M. Grapevine anatomy and physiology. Printed at Washington State University. 2007.Google Scholar
  34. 34.
    Pereira GE, Gaudillere JP, Pieri P, Hilbert G, Maucourt M, Deborde C. Microclimate influence on mineral and metabolic profiles of grape berries. J Agric Food Chem. 2006;54:6765–75.CrossRefGoogle Scholar
  35. 35.
    Price SF, Breen PJ, Valladao M, Watson BT. Cluster sun exposure and quercetin in Pinot Noir grapes and wine. Am J Enol Vitic. 1995;46(2):187–94.Google Scholar
  36. 36.
    Spayd SE, Tarara JM, Mee DL, Ferguson JC. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot Berries. Am J Enol Vitic. 2002;3:171–82.Google Scholar
  37. 37.
    Jeong ST, Goto-Yacamoto N, Kobayashi S, Esaka M. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci. 2004;167:247–52.CrossRefGoogle Scholar
  38. 38.
    Koyama K, Goto-Yamamoto N. Bunch shading during different developmental stages affects the phenolic biosynthesis in berry skins of ‘Cabernet Sauvignon’ grapes. J Am Soc Hortic Sci. 2008;133:743–53. [34] Bergqvist et al., 2001.Google Scholar
  39. 39.
    Downey MO, Mazza M, Krstic MP. Development of a stable extract for anthocyanins and flavonols from grape skin. Am J Enol Vitic. 2007;58(3):358–64.Google Scholar
  40. 40.
    Kliewer WM, Antcliff AJ. Influence of defoliation, leaf darkening, and cluster shading on the growth 1and composition of Sultana grapes. Am J Enol Vitic. 1970;1:26–36.Google Scholar
  41. 41.
    de Rosas I, et al. Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions. Plant Sci. 2017;258:137–45.CrossRefGoogle Scholar
  42. 42.
    Pérez-Magariño S, González-San José ML. Índices de madurez tecnológica basados en antociánico y flavánico. Tecnol vino. 2004;20:61–6.Google Scholar
  43. 43.
    Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A. Influence of pre and post veraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv shiraz. Am J Enol Viticult. 2002;53:261.Google Scholar
  44. 44.
    Quiroga AM, Deis L, Cavagnaro JB, Bottini R, Silva MF. Water stress and abscisic acid exogenous supply produce differential enhancements in the concentration of selected phenolic compounds in Cabernet Sauvignon. J Berry Res. 2012;2(1):33–44.Google Scholar
  45. 45.
    Jones GV, Duff AA, Hall A, Myers JW. Spatial analysis of climate in winegrape 2228 growing regions in the western United States. Am J Enol Vitic. 2010;61(3):313–26.Google Scholar
  46. 46.
    Jones GV, White MA, Cooper OR, Storchmann K. Climate change and global wine quality. Clim Chang. 2005;73:319–43.CrossRefGoogle Scholar
  47. 47.
    IPCC. Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editors. Climate change: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press; 2007. 18 p.Google Scholar
  48. 48.
    IPCC. Working Group I contribution to the IPCC fifth assessment Report (AR5) Climate Change 2013: The physical Science basis twelfth Session Stockholm. 2013.Google Scholar
  49. 49.
    Klein Tank AMG, Wijngaard JB, Konnen GP, Bohn B, Demaree G, Gocheva A, Mileta M, Pashiardis S, Hejrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Muller-Westermeier G, Tzanakou M, Szalai S, Palsd’ Ottir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Van Englen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnart T, Antonio Lopez J, Dahlstrom B, Moberg A, Kirchoofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P. Daily surface air temperature and precipitation dataset 1901–1999 for European Climate Assessment (ECA). Int J Climatol. 2002;22:1441–53.CrossRefGoogle Scholar
  50. 50.
    Keller M, Hrazdina G. Interaction of nitrogen availability during bloom and light intensity during veraison. II Effects on anthocyanin and phenolic development during grape ripening. Am J Enol Vitic. 1998;49:341–9.Google Scholar
  51. 51.
    Webb LB, Whetton PH, Barlow EWR. Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust J Grape Wine Res. 2007;13:165–75.CrossRefGoogle Scholar
  52. 52.
    Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie ELR. Historical phenology: grape ripening as a past climate indicator. Nature. 2004;432(7015):289–90.CrossRefGoogle Scholar
  53. 53.
    Matthews MA, Anderson MM. Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. Am J Enol Vitic. 1998;39(4):313–20.Google Scholar
  54. 54.
    Ortega-Regules A, Romero-Cascales I, Ros-García JM, Lopez-Roca JM, Gomez-Plaza E. A first approach towards the relationship between grape skin cell-wall composition and anthocyanin extractability. Anal Chim Acta. 2006;563:26–32.CrossRefGoogle Scholar
  55. 55.
    Santos-Buelga C, de Freitas V. Influence of phenolics on wine organoleptic properties. In: Moreno-Arribas MV, Polo MC, editors. Wine chemistry and biochemistry. New York: Springer; 2003. p. 529–70. 529–70.Google Scholar
  56. 56.
    He F, Liang NN, Mu L, Pan QH, Wang J, Reeves MJ, Duan CQ. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules. 2012;17:1483–519.CrossRefGoogle Scholar
  57. 57.
    González-Neves G, Gil G, Barreiro L. Influence of grape variety on the extraction of anthocyanins during the fermentation on skins. Eur Food Res Technol. 2008;226(6):1349.CrossRefGoogle Scholar
  58. 58.
    Steinmetz KA, Potter JD. Vegetables, fruits, and cancer. I. Epidemiology. Cancer Causes Control. 1991;2:325–37.CrossRefGoogle Scholar
  59. 59.
    Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523–6.CrossRefGoogle Scholar
  60. 60.
    Frankel EN, Waterhouse AL, Kinsella JE. Inhibition of human LDL oxidation by resveratrol. Lancet. 1993;341(11)CrossRefGoogle Scholar
  61. 61.
    Rivera L, Moron R, Sanchez M, Zarzuelo A, Galisteo M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring). 2008;16:2081–7.CrossRefGoogle Scholar
  62. 62.
    Vazquez-Prieto MA, Rodriguez Lanzi C, Lembo C, Galmarini CR, Miatello RM. Garlic and onion attenuates vascular inflammation and oxidative stress in fructose-fed rats. J Nutr Metab. 2011:475216.Google Scholar
  63. 63.
    Vazquez-Prieto MA, Bettaieb A, Haj FG, Fraga CG, Oteiza PI. Epicatechin prevents TNFalpha-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3- 3T3-L1 adipocytes. Arch Biochem Biophys. 2012;527:113–8.CrossRefGoogle Scholar
  64. 64.
    Bettaieb A, Vazquez Prieto MA, Rodriguez Lanzi C, Miatello RM, Haj FG, Fraga CG, Oteiza PI. (-)-Epicatechin mitigates high-fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress. Free Radic Biol Med. 2014;72:247–56.CrossRefGoogle Scholar
  65. 65.
    Vazquez Prieto MA, Bettaieb A, Rodriguez Lanzi C, Soto VC, Perdicaro DJ, Galmarini CR, Haj FG, Miatello RM, Oteiza PI. Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and 3T3-L1 adipocytes. Mol Nutr Food Res. 2015;59:622–33.CrossRefGoogle Scholar
  66. 66.
    Rodriguez Lanzi C, de Rosas I, Perdicaro DJ, Ponce MT, Martinez L, Miatello RM, Cavagnaro B, Vazquez Prieto MA. Effects of salicylic acid-induced wine rich in anthocyanins on metabolic parameters and adipose insulin signaling in high-fructose fed rats. Int J Food Sci Nutr. 2016;12:1–8.Google Scholar
  67. 67.
    Tsuda T. Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res. 2012;56:159–70.CrossRefGoogle Scholar
  68. 68.
    Ribnicky DM, Roopchand DE, Oren A, Grace M, Poulev A. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food Chem. 2014;142:349–57.CrossRefGoogle Scholar
  69. 69.
    Burton-Freeman B, Linares A, Hyson D, Kappagoda T. Strawberry modulates LDL oxidation and postprandial lipemia in response to high-fat meal in overweight hyperlipidemic men and women. J Am Coll Nutr. 2010;2010(29):46–54.CrossRefGoogle Scholar
  70. 70.
    Burton-Freeman B. Postprandial metabolic events and fruit-derived phenolics: a review of the science. Br J Nutr. 2010;104(Suppl. 3):S1–14.CrossRefGoogle Scholar
  71. 71.
    Cassidy A, O’Reilly EJ, Kay C, Sampson L, Franz M. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr. 2011;93:338–47.CrossRefGoogle Scholar
  72. 72.
    Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13) C-tracer study. Am J Clin Nutr. 2013;97:995–1003.CrossRefGoogle Scholar
  73. 73.
    Lila MA, Ribnicky DM, Rojo LE, Rojas-Silva P, Oren A. Complementary approaches to gauge the bioavailability and distribution of ingested berry polyphenolics. J Agric Food Chem. 2012;60:5763–71.CrossRefGoogle Scholar
  74. 74.
    Passamonti S, Terdoslavich M, Franca R, Vanzo A, Tramer F, et al. Bioavailability of flavonoids: a review of their membrane transport and the function of bilitranslocase in animal and plant organisms. Curr Drug Metab. 2009;10:369–94.CrossRefGoogle Scholar
  75. 75.
    Novotny JA, Clevidence BA, Kurilich AC. Anthocyanin kinetics are dependent on anthocyanin structure. Br J Nutr. 2012;107:504–9.CrossRefGoogle Scholar
  76. 76.
    Passamonti S, Vrhovsek U, Mattivi F. The interaction of anthocyanins with bilitranslocase. Biochem Biophys Res Commun. 2002;296:631–6.CrossRefGoogle Scholar
  77. 77.
    McDougall GJ, Fyffe S, Dobson P, Stewart D. Anthocyanins from red wine – their stability under simulated gastrointestinal digestion quality, health and nutrition programme, genes to products theme. Dundee: Scottish Crop Research Institute; 2005.Google Scholar
  78. 78.
    Karawajczyk A, Drgan V, Medic N, Oboh G, Passamonti S, Novič M. Properties of flavonoids influencing the binding to bilitranslocase investigated by neural network modelling. Biochem Pharmacol. 2007;73(2):308–20.CrossRefGoogle Scholar
  79. 79.
    Kandaswami C, Middleton E. Flavonoids as antioxidants. In: Shahidi F, editor. Natural antioxidants: chemistry, health effects and applications. Champaign: AOCS Press; 1997. p. 174–203.Google Scholar
  80. 80.
    Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52:673–751.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • María Inés De Rosas
    • 1
  • Leonor Deis
    • 1
    Email author
  • Liliana Martínez
    • 1
  • Martín Durán
    • 1
  • Emiliano Malovini
    • 1
  • Juan Bruno Cavagnaro
    • 2
  1. 1.Faculty of Agricultural SciencesNational University of CuyoMendozaArgentina
  2. 2.Institute for Agricultural Biology MendozaNational Scientific and Technical Research Council and National University of CuyoMendozaArgentina

Personalised recommendations