Advertisement

Heart Rate Variability: A Tool to Explore Autonomic Nervous System Activity in Health and Disease

  • Daniel E. Vigo
  • Leonardo Nicola Siri
  • Daniel P. Cardinali
Chapter

Abstract

It is accepted that several biological (genetic, physiological), psychological (personality, mood), social (family, work), and ecological (living environment) factors interact to allow the preservation of quality of life and health. The autonomic nervous system (ANS) is structural and rhythmically interfaced between forebrain, internal, and external environments, to regulate energy, matter, and information exchanges, thus expressing the biopsychosocial nature of the individual. During last year strong evidence has been produced that demonstrates the influence of the ANS into beat-to-beat fluctuations of cardiac heart period. Stephen Hales was the first in describing the association between respiratory cycle and heart rate. However, it was not until the second half of the twentieth century that subtle relations between ANS activity and heart rate variability (HRV) were systematically explored in several physiological conditions, including physical activity, sleep, and stress. In addition, autonomic imbalance may configure a final common pathway to increased morbidity and mortality from a host of physical, such as metabolic disorders and cardiovascular disease, and psychological conditions, like anxiety or depression. This chapter will focus on the physiological mechanisms underlying HRV, the methods for assessing it and the information that has provided about ANS activity in certain physiological and pathological situations.

Keywords

Autonomic nervous system Heart rate variability Sleep Stress Complex diseases Psychological disorders 

References

  1. 1.
    Billman GE. Heart rate variability – a historical perspective. Front Physiol. 2011;2:86.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Stauss HM. Heart rate variability. Am J Phys Regul Integr Comp Phys. 2003;285(5):R927–31.Google Scholar
  3. 3.
    Randall DC, Brown DR, McGuirt AS, Thompson GW, Armour JA, Ardell JL. Interactions within the intrinsic cardiac nervous system contribute to chronotropic regulation. Am J Phys Regul Integr Comp Phys. 2003;285(5):R1066–75.Google Scholar
  4. 4.
    Barbieri R, Triedman JK, Saul JP. Heart rate control and mechanical cardiopulmonary coupling to assess central volume: a systems analysis. Am J Phys Regul Integr Comp Phys. 2002;283(5):R1210–20.Google Scholar
  5. 5.
    Julien C. The enigma of Mayer waves: facts and models. Cardiovasc Res. 2006;70(1):12–21.PubMedGoogle Scholar
  6. 6.
    Sollers JJ III, Sanford TA, Nabors-Oberg R. Examining changes in HRV in reponse to varying ambient temperature. IEEE Eng Med Biol Mag. 2002;21(4):30–4.PubMedGoogle Scholar
  7. 7.
    Taylor JA, Carr DL, Myers CW, Eckberg DL. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation. 1998;98(6):547–55.PubMedGoogle Scholar
  8. 8.
    Grimaldi D, Silvani A, Benarroch EE, Cortelli P. Orexin/hypocretin system and autonomic control: new insights and clinical correlations. Neurology. 2014;82(3):271–8.PubMedGoogle Scholar
  9. 9.
    Mansier P, Clairambault J, Charlotte N, Medigue C, Vermeiren C, LePape G, et al. Linear and non-linear analyses of heart rate variability: a minireview. Cardiovasc Res. 1996;31(3):371–9.PubMedGoogle Scholar
  10. 10.
    Seely AJ, Macklem PT. Complex systems and the technology of variability analysis. Crit Care. 2004;8(6):R367–84.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Goldberger AL. Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet. 1996;347(9011):1312–4.PubMedGoogle Scholar
  12. 12.
    Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci. 2009;367(1887):277–96.PubMedGoogle Scholar
  13. 13.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043–65.Google Scholar
  14. 14.
    Pichot V, Gaspoz JM, Molliex S, Antoniadis A, Busso T, Roche F, et al. Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. J Appl Physiol. 1999;86(3):1081–91.PubMedGoogle Scholar
  15. 15.
    Platisa M, Gal V. Reflection of heart rate regulation on linear and nonlinear heart rate variability measures. Physiol Meas. 2006;27:145–54.PubMedGoogle Scholar
  16. 16.
    Vigo DE, Dominguez J, Guinjoan SM, Scaramal M, Ruffa E, Solerno J, et al. Nonlinear analysis of heart rate variability within independent frequency components during the sleep-wake cycle. Auton Neurosci. 2010;154(1–2):84–8.PubMedGoogle Scholar
  17. 17.
    Kiyono K, Struzik ZR, Aoyagi N, Togo F, Yamamoto Y. Phase transition in a healthy human heart rate. Phys Rev Lett. 2005;95(058101):1–4.Google Scholar
  18. 18.
    Bai X, Li J, Zhou L, Li X. Influence of the menstrual cycle on nonlinear properties of heart rate variability in young women. Am J Physiol Heart Circ Physiol. 2009;297(2):H765–74.PubMedGoogle Scholar
  19. 19.
    Stein PK, Hagley MT, Cole PL, Domitrovich PP, Kleiger RE, Rottman JN. Changes in 24-hour heart rate variability during normal pregnancy. Am J Obstet Gynecol. 1999;180(4):978–85.PubMedGoogle Scholar
  20. 20.
    Gandhi PH, Mehta HB, Gokhale AV, Desai CB, Gokhale PA, Shah CJ. A study on cardiac autonomic modulation during pregnancy by non-invasive heart rate variability measurement. Int J Med Public Health. 2014;4(4):441–5.Google Scholar
  21. 21.
    Matsuo H, Inoue K, Hapsari ED, Kitano K, Shiotani H. Change of autonomic nervous activity during pregnancy and its modulation of labor assessed by spectral heart rate variability analysis. Clin Exp Obstet Gynecol. 2007;34(2):73–9.Google Scholar
  22. 22.
    Hoikkala H, Haapalahti P, Viitasalo M, Vaananen H, Sovijarvi AR, Ylikorkala O, et al. Association between vasomotor hot flashes and heart rate variability in recently postmenopausal women. Menopause. 2010;17(2):315–20.Google Scholar
  23. 23.
    Jones SM, Guthrie KA, LaCroix AZ, Sternfeld B, Landis CA, Reed SD, et al. Is heart rate variability associated with frequency and intensity of vasomotor symptoms among healthy perimenopausal and postmenopausal women? Clin Auton Res. 2016;26(1):7–13.Google Scholar
  24. 24.
    Iyengar N, Peng CK, Morin R, Goldberger AL, Lipsitz LA. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Phys. 1996;271(4 Pt 2):R1078–84.Google Scholar
  25. 25.
    Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992;267(13):1806–9.Google Scholar
  26. 26.
    Pikkujamsa SM, Makikallio TH, Sourander LB, Raiha IJ, Puukka P, Skytta J, et al. Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory. Circulation. 1999;100(4):393–9.Google Scholar
  27. 27.
    Vigo DE, Guinjoan SM, Scaramal M, Nicola Siri LN, Cardinali DP. Wavelet transform shows age-related changes of heart rate variability within independent frequency components. Auton Neurosci. 2005;123(1–2):94–100.Google Scholar
  28. 28.
    Hansen AL, Johnsen BH, Thayer JF. Vagal influence on working memory and attention. Int J Psychophysiol. 2003;48(3):263–74.Google Scholar
  29. 29.
    Duschek S, Muckenthaler M, Werner N, Del Paso GA. Relationships between features of autonomic cardiovascular control and cognitive performance. Biol Psychol. 2009;81(2):110–7.Google Scholar
  30. 30.
    Drucaroff LJ, Kievit R, Guinjoan SM, Gerschcovich ER, Cerquetti D, Leiguarda R, et al. Higher autonomic activation predicts better performance in Iowa gambling task. Cogn Behav Neurol. 2011;24(2):93–8.PubMedGoogle Scholar
  31. 31.
    Peng CK, Henry IC, Mietus JE, Hausdorff JM, Khalsa G, Benson H, et al. Heart rate dynamics during three forms of meditation. Int J Cardiol. 2004;95(1):19–27.PubMedGoogle Scholar
  32. 32.
    Cysarz D, Bussing A. Cardiorespiratory synchronization during Zen meditation. Eur J Appl Physiol. 2005;95(1):88–95.PubMedGoogle Scholar
  33. 33.
    Iglesias SL, Azzara S, Granchetti H, Lagomarsino E, Vigo DE. Anxiety, anger, salivary cortisol and cardiac autonomic activity in palliative care professionals with and without mind–body training experience: results from a pilot study. Eur J Integr Med. 2014;6(1):98–103.Google Scholar
  34. 34.
    Hautala AJ, Karjalainen J, Kiviniemi AM, Kinnunen H, Makikallio TH, Huikuri HV, et al. Physical activity and heart rate variability measured simultaneously during waking hours. Am J Physiol Heart Circ Physiol. 2010;298(3):H874–80.PubMedGoogle Scholar
  35. 35.
    Vigo DE, Perez LS, Videla AJ, Perez CD, Hunicken HM, Mercuri J, et al. Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude. Wilderness Environ Med. 2010;21(1):4–10.PubMedGoogle Scholar
  36. 36.
    Rennie KL, Hemingway H, Kumari M, Brunner E, Malik M, Marmot M. Effects of moderate and vigorous physical activity on heart rate variability in a British study of civil servants. Am J Epidemiol. 2003;158(2):135–43.PubMedGoogle Scholar
  37. 37.
    Chang CS, Ko CW, Lien HC, Chou MC. Varying postprandial abdominovagal and cardiovagal activity in normal subjects. Neurogastroenterol Motil. 2010;22(5):546–51. e119Google Scholar
  38. 38.
    Cardinali DP, Cano P, Jimenez-Ortega V, Esquifino AI. Melatonin and the metabolic syndrome: physiopathologic and therapeutical implications. Neuroendocrinology. 2011;93(3):133–42.Google Scholar
  39. 39.
    Chouchou F, Desseilles M. Heart rate variability: a tool to explore the sleeping brain? Front Neurosci. 2014;8:402.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Chua EC, Tan WQ, Yeo SC, Lau P, Lee I, Mien IH, et al. Heart rate variability can be used to estimate sleepiness-related decrements in psychomotor vigilance during total sleep deprivation. Sleep. 2012;35(3):325–34.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Bashan A, Bartsch RP, Kantelhardt JW, Havlin S, Ivanov PC. Network physiology reveals relations between network topology and physiological function. Nat Commun. 2012;3:702.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Otzenberger H, Gronfier C, Simon C, Charloux A, Ehrhart J, Piquard F, et al. Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am J Phys. 1998;275(3 Pt 2):H946–50.Google Scholar
  43. 43.
    Togo F, Yamamoto Y. Decreased fractal component of human heart rate variability during non-REM sleep. Am J Physiol Heart Circ Physiol. 2001;280(1):H17–21.PubMedGoogle Scholar
  44. 44.
    Busek P, Vankova J, Opavsky J, Salinger J, Nevsimalova S. Spectral analysis of the heart rate variability in sleep. Physiol Res. 2005;54(4):369–76.PubMedGoogle Scholar
  45. 45.
    Jurysta F, van de Borne P, Migeotte PF, Dumont M, Lanquart JP, Degaute JP, et al. A study of the dynamic interactions between sleep EEG and heart rate variability in healthy young men. Clin Neurophysiol. 2003;114(11):2146–55.PubMedGoogle Scholar
  46. 46.
    Rector DM, Richard CA, Staba RJ, Harper RM. Sleep states alter ventral medullary surface responses to blood pressure challenges. Am J Phys Regul Integr Comp Phys. 2000;278(4):R1090–8.Google Scholar
  47. 47.
    Vanoli E, Adamson PB, Ba L, Pinna GD, Lazzara R, Orr WC. Heart rate variability during specific sleep stages. A comparison of healthy subjects with patients after myocardial infarction. Circulation. 1995;91(7):1918–22.PubMedGoogle Scholar
  48. 48.
    Brandenberger G, Viola AU. Autonomic nervous system activity during sleep in humans. In: Cardinali DP, Pandi-Perumal SR, editors. Neuroendocrine correlates of sleep/wakefulness. 1. New York: Springer; 2006. p. 471–85.Google Scholar
  49. 49.
    Viola AU, Tobaldini E, Chellappa SL, Casali KR, Porta A, Montano N. Short-term complexity of cardiac autonomic control during sleep: REM as a potential risk factor for cardiovascular system in aging. PLoS One. 2011;6(4):e19002.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Pedemonte M, Rodriguez-Alvez A, Velluti RA. Electroencephalographic frequencies associated with heart changes in RR interval variability during paradoxical sleep. Auton Neurosci. 2005;123(1–2):82–6.Google Scholar
  51. 51.
    Vandewalle G, Middleton B, Rajaratnam SM, Stone BM, Thorleifsdottir B, Arendt J, et al. Robust circadian rhythm in heart rate and its variability: influence of exogenous melatonin and photoperiod. J Sleep Res. 2007;16(2):148–55.Google Scholar
  52. 52.
    Stuckey MI, Petrella RJ. Heart rate variability in type 2 diabetes mellitus. Crit Rev Biomed Eng. 2013;41(2):137–47.Google Scholar
  53. 53.
    Franca da Silva AK, Penachini da Costa de Rezende Barbosa M, Marques VF, Destro Christofaro DG, Marques Vanderlei LC. Application of heart rate variability in diagnosis and prognosis of individuals with diabetes mellitus: systematic review. Ann Noninvasive Electrocardiol. 2016;21(3):223–35.Google Scholar
  54. 54.
    Kondo K, Matsubara T, Nakamura J, Hotta N. Characteristic patterns of circadian variation in plasma catecholamine levels, blood pressure and heart rate variability in type 2 diabetic patients. Diabet Med. 2002;19(5):359–65.Google Scholar
  55. 55.
    Rossi RC, Vanderlei LC, Goncalves AC, Vanderlei FM, Bernardo AF, Yamada KM, et al. Impact of obesity on autonomic modulation, heart rate and blood pressure in obese young people. Auton Neurosci. 2015;193:138–41.PubMedGoogle Scholar
  56. 56.
    Emdin M, Gastaldelli A, Muscelli E, Macerata A, Natali A, Camastra S, et al. Hyperinsulinemia and autonomic nervous system dysfunction in obesity: effects of weight loss. Circulation. 2001;103(4):513–9.PubMedGoogle Scholar
  57. 57.
    Adachi T, Sert-Kuniyoshi FH, Calvin AD, Singh P, Romero-Corral A, van der Walt C, et al. Effect of weight gain on cardiac autonomic control during wakefulness and sleep. Hypertension. 2011;57(4):723–30.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Greiser KH, Kluttig A, Schumann B, Swenne CA, Kors JA, Kuss O, et al. Cardiovascular diseases, risk factors and short-term heart rate variability in an elderly general population: the CARLA study 2002–2006. Eur J Epidemiol. 2009;24(3):123–42.PubMedGoogle Scholar
  59. 59.
    Thayer JF, Fischer JE. Heart rate variability, overnight urinary norepinephrine, and plasma cholesterol in apparently healthy human adults. Int J Cardiol. 2013;162(3):240–4.PubMedGoogle Scholar
  60. 60.
    Palatini P, Julius S. The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Hypertens Rep. 2009;11(3):199–205.Google Scholar
  61. 61.
    Kolasinska-Kloch W, Furgala A, Banach T, Laskiewicz J, Thor PJ. Circadian heart rate variability in patients with primary arterial hypertension. Przegl Lek. 2002;59(9):752–5.Google Scholar
  62. 62.
    Chakko S, Mulingtapang RF, Huikuri HV, Kessler KM, Materson BJ, Myerburg RJ. Alterations in heart rate variability and its circadian rhythm in hypertensive patients with left ventricular hypertrophy free of coronary artery disease. Am Heart J. 1993;126(6):1364–72.Google Scholar
  63. 63.
    Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Telera MP, Pede S, et al. Adverse prognostic value of a blunted circadian rhythm of heart rate in essential hypertension. J Hypertens. 1998;16(9):1335–43.Google Scholar
  64. 64.
    Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141(2):122–31.Google Scholar
  65. 65.
    Huikuri HV, Makikallio TH. Heart rate variability in ischemic heart disease. Auton Neurosci. 2001;90(1–2):95–101.Google Scholar
  66. 66.
    Gallo C, Bocchino PP, Magnano M, Gaido L, Zema D, Battaglia A, et al. Autonomic tone activity before the onset of atrial fibrillation. J Cardiovasc Electrophysiol. 2017; 28(3):304–14.Google Scholar
  67. 67.
    Binici Z, Mouridsen MR, Kober L, Sajadieh A. Decreased nighttime heart rate variability is associated with increased stroke risk. Stroke. 2011;42(11):3196–201.Google Scholar
  68. 68.
    Kuriyama N, Mizuno T, Niwa F, Watanabe Y, Nakagawa M. Autonomic nervous dysfunction during acute cerebral infarction. Neurol Res. 2010;32(8):821–7.Google Scholar
  69. 69.
    McLaren A, Kerr S, Allan L, Steen IN, Ballard C, Allen J, et al. Autonomic function is impaired in elderly stroke survivors. Stroke. 2005;36(5):1026–30.Google Scholar
  70. 70.
    Korpelainen JT, Sotaniemi KA, Huikuri HV, Myllyla VV. Circadian rhythm of heart rate variability is reversibly abolished in ischemic stroke. Stroke. 1997;28(11):2150–4.PubMedGoogle Scholar
  71. 71.
    Yperzeele L, van Hooff RJ, Nagels G, De SA, De KJ, Brouns R. Heart rate variability and baroreceptor sensitivity in acute stroke: a systematic review. Int J Stroke. 2015;10(6):796–800.PubMedGoogle Scholar
  72. 72.
    Collins O, Dillon S, Finucane C, Lawlor B, Kenny RA. Parasympathetic autonomic dysfunction is common in mild cognitive impairment. Neurobiol Aging. 2012;33(10):2324–33.PubMedGoogle Scholar
  73. 73.
    Zulli R, Nicosia F, Borroni B, Agosti C, Prometti P, Donati P, et al. QT dispersion and heart rate variability abnormalities in Alzheimer’s disease and in mild cognitive impairment. J Am Geriatr Soc. 2005;53(12):2135–9.PubMedGoogle Scholar
  74. 74.
    Zhou X, Ma Z, Zhang L, Zhou S, Wang J, Wang B, et al. Heart rate variability in the prediction of survival in patients with cancer: a systematic review and meta-analysis. J Psychosom Res. 2016;89:20–5.PubMedGoogle Scholar
  75. 75.
    Palma MR, Vanderlei LC, Ribeiro FE, Mantovani AM, Christofaro DG, Fregonesi CE. The relationship between post-operative time and cardiac autonomic modulation in breast cancer survivors. Int J Cardiol. 2016;224:360–5.PubMedGoogle Scholar
  76. 76.
    Mouton C, Ronson A, Razavi D, Delhaye F, Kupper N, Paesmans M, et al. The relationship between heart rate variability and time-course of carcinoembryonic antigen in colorectal cancer. Auton Neurosci. 2012;166(1–2):96–9.PubMedGoogle Scholar
  77. 77.
    De CM, van Brummelen D, Schallier D, De Greve J, Gidron Y. The relationship between vagal nerve activity and clinical outcomes in prostate and non-small cell lung cancer patients. Oncol Rep. 2013;30(5):2435–41.Google Scholar
  78. 78.
    Kim K, Chae J, Lee S. The role of heart rate variability in advanced non-small-cell lung cancer patients. J Palliat Care. 2015;31(2):103–8.PubMedGoogle Scholar
  79. 79.
    Brosschot JF, Van DE, Thayer JF. Daily worry is related to low heart rate variability during waking and the subsequent nocturnal sleep period. Int J Psychophysiol. 2007;63(1):39–47.PubMedGoogle Scholar
  80. 80.
    Sgoifo A, Carnevali L, Alfonso ML, Amore M. Autonomic dysfunction and heart rate variability in depression. Stress. 2015;18(3):343–52.PubMedGoogle Scholar
  81. 81.
    Carney RM, Saunders RD, Freedland KE, Stein P, Rich MW, Jaffe AS. Association of depression with reduced heart rate variability in coronary artery disease. Am J Cardiol. 1995;76(8):562–4.PubMedGoogle Scholar
  82. 82.
    Vigo DE, Nicola Siri L, Ladron De Guevara MS, Martinez-Martinez JA, Fahrer RD, Cardinali DP, et al. Relation of depression to heart rate nonlinear dynamics in patients > or =60 years of age with recent unstable angina pectoris or acute myocardial infarction. Am J Cardiol. 2004;93(6):756–60.PubMedGoogle Scholar
  83. 83.
    Yang AC, Tsai SJ, Yang CH, Kuo CH, Chen TJ, Hong CJ. Reduced physiologic complexity is associated with poor sleep in patients with major depression and primary insomnia. J Affect Disord. 2011;131(1–3):179–85.PubMedGoogle Scholar
  84. 84.
    Boettger S, Hoyer D, Falkenhahn K, Kaatz M, Yeragani VK, Bar KJ. Altered diurnal autonomic variation and reduced vagal information flow in acute schizophrenia. Clin Neurophysiol. 2006;117(12):2715–22.PubMedGoogle Scholar
  85. 85.
    Castro MN, Vigo DE, Weidema H, Fahrer RD, Chu EM, de Achaval D, et al. Heart rate variability response to mental arithmetic stress in patients with schizophrenia: autonomic response to stress in schizophrenia. Schizophr Res. 2008;99(1-3):294–303.PubMedGoogle Scholar
  86. 86.
    Castro MN, Vigo DE, Chu EM, Fahrer RD, de Achával D, Costanzo EY, et al. Heart rate variability response to mental arithmetic stress is abnormal in first-degree relatives of individuals with schizophrenia. Schizophr Res. 2009;109(1–3):134–40.PubMedGoogle Scholar
  87. 87.
    Togo F, Takahashi M. Heart rate variability in occupational health – a systematic review. Ind Health. 2009;47(6):589–602.PubMedGoogle Scholar
  88. 88.
    Ito H, Nozaki M, Maruyama T, Kaji Y, Tsuda Y. Shift work modifies the circadian patterns of heart rate variability in nurses. Int J Cardiol. 2001;79(2–3):231–6.PubMedGoogle Scholar
  89. 89.
    Chung MH, Kuo TB, Hsu N, Chu H, Chou KR, Yang CC. Sleep and autonomic nervous system changes – enhanced cardiac sympathetic modulations during sleep in permanent night shift nurses. Scand J Work Environ Health. 2009;35(3):180–7.PubMedGoogle Scholar
  90. 90.
    Vigo DE, Ogrinz B, Wan L, Bersenev E, Tuerlinckx F, Van den Bergh O, et al. Sleep-wake differences in heart rate variability during a 105-day simulated mission to Mars. Aviat Space Environ Med. 2012;83(2):125–30.Google Scholar
  91. 91.
    Vigo DE, Tuerlinckx F, Ogrinz B, Wan L, Simonelli G, Bersenev E, et al. Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars. Aviat Space Environ Med. 2013;84(10):1023–8.Google Scholar
  92. 92.
    Recordati G. A thermodynamic model of the sympathetic and parasympathetic nervous systems. Auton Neurosci. 2003;103(1–2):1–12.Google Scholar
  93. 93.
    Moser M, Fruhwirth M, Penter R, Winker R. Why life oscillates – from a topographical towards a functional chronobiology. Cancer Causes Control. 2006;17(4):591–9.Google Scholar
  94. 94.
    Cardinali D. Autonomic nervous system. Basic and clinical aspects. Cham: Springer International Publishing; 2017.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel E. Vigo
    • 1
    • 2
    • 3
  • Leonardo Nicola Siri
    • 4
  • Daniel P. Cardinali
    • 1
    • 3
  1. 1.Chronophysiology Lab, Institute for Biomedical Research (BIOMED)Pontifical Catholic University of Argentina (UCA) and National Research Council (CONICET)Buenos AiresArgentina
  2. 2.Research Group on Health Psychology, Faculty of Psychology and Educational SciencesKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.Teaching and Research Department, Faculty of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
  4. 4.Southwest Regional InstituteTechnological UniversityFray BentosUruguay

Personalised recommendations