Advertisement

Biotechnological Strategies for Development of Aflatoxin-Free Crops

  • Kalyani Prasad
  • Kiran Kumar Sharma
  • Pooja Bhatnagar-MathurEmail author
Chapter
Part of the Concepts and Strategies in Plant Sciences book series (CSPS)

Abstract

Aflatoxins are secondary metabolites produced by the fungal genus Aspergillus (mainly A. flavus and A. parasiticus) that contaminate various agricultural commodities, but most prevalent in maize, groundnut, and cotton. Considered to be potent carcinogens and teratogens to humans and farm animals, aflatoxin contamination gets accentuated by hot and dry weather conditions, insect feeding and mechanical damage during and after harvest, and improper storage conditions. Growing global concerns about aflatoxin contamination have prompted search for effective control measures and specific regulations to limit exposure to these mycotoxins. Cultural practices include use of resistant varieties; control of insect pests, timely harvesting, proper drying, storage, sorting, and cleaning of harvested produce curtail aflatoxin contamination to some extent, and biological control strategies such as use of atoxigenic A. flavus strains have proven efficient in preventing infection by aflatoxin-producing strains. Genetic engineering for aflatoxin resistance through gene overexpression and recent development in area of transgenics through host-induced gene silencing of aflatoxin biosynthesis pathway genes have provided promising results in several crops such as cotton, corn, and groundnut. This book’s chapter provides comprehensive overview on the various strategies and also updates the status of research to achieve aflatoxin resistance in crop plants. The role of various factors affecting aflatoxin contamination is also discussed that help to take appropriate measures for successful control of aflatoxin resistance. The availability of advanced molecular techniques, cutting edge tools and technologies provides greater potential to the development of markers and QTLs for aflatoxin resistance speeding up the development of durable aflatoxin-resistant varieties.

Keywords

Aflatoxin Aspergillus Groundnut Maize Biotechnology 

References

  1. Abbas HK, Zablotowicz RM, Bruns HA, Abel CA (2006) Biocontrol of aflatoxin in corn by inoculation with non-aflatoxigenic Aspergillus flavus isolates. Biocontrol Sci Technol 16(5):437–449CrossRefGoogle Scholar
  2. Abbas HK, Weaver MA, Horn BW, Carbone I, Monacell JT, Shier WT (2011) Selection of Aspergillus flavus isolates for biological control of aflatoxins in corn. Toxin Rev 30(2–3):59–70CrossRefGoogle Scholar
  3. Abbas HK, Zablotowicz RM, Horn BW, Phillips NA, Johnson BJ, Jin X et al (2012) Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:198–208.  https://doi.org/10.1080/19440049.2010.544680CrossRefGoogle Scholar
  4. Abdel-Hadi AM, Caley DP, Carter DR, Magan N (2011) Control of aflatoxin production of Aspergillus flavus and Aspergillus parasiticus using RNA silencing technology by targeting aflD (nor-1) gene. Toxins 3(6):647–659CrossRefPubMedPubMedCentralGoogle Scholar
  5. Accinelli C, Saccà ML, Abbas HK, Zablotowicz RM, Wilkinson JR (2009) Use of a granular bioplastic formulation for carrying conidia of a non-aflatoxigenic strain of Aspergillus flavus. Bioresour Technol 100(17):3997–4004CrossRefPubMedPubMedCentralGoogle Scholar
  6. Accinelli C, Abbas HK, Vicari A, Shier WT (2016) Leaf application of a sprayable bioplastic-based formulation of biocontrol Aspergillus flavus strains for reduction of aflatoxins in corn. Pest Manag Sci 72(8):1521–1528CrossRefPubMedPubMedCentralGoogle Scholar
  7. Adye J, Mateles R (1964) Incorporation of labelled compounds into aflatoxins. Biochim Biophys Acta (BBA) Gen Subjects 86(2):418–420.  https://doi.org/10.1016/0304-4165(64)90077-7
  8. Affeldt KJ, Carrig J, Amare M, Keller NP (2014) Global survey of canonical Aspergillus flavus G protein-coupled receptors. mBio 5(5):e01501–01514Google Scholar
  9. Alakonya AE, Monda EO (2013) A new approach in aflatoxin management in Africa: targeting aflatoxin/sterigmatocystin biosynthesis in Aspergillus species by RNA silencing technique. Aflatoxins Recent Adv Future 41–57Google Scholar
  10. Alberts J, Lilly M, Rheeder J, Burger H, Shephard G, Gelderblom W (2017) Technological and community-based methods to reduce mycotoxin exposure. Food Control 73:101–109CrossRefGoogle Scholar
  11. Anderson W, Holbrook C, Wilson D, Matheron M (1995) Evaluation of preharvest aflatoxin contamination in several potentially resistant peanut genotypes. Peanut Sci 22(1):29–32CrossRefGoogle Scholar
  12. Anderson W, Holbrook C, Wilson D (1996) Development of greenhouse screening for resistance to Aspergillus parasiticus infection and preharvest aflatoxin contamination in peanut. Mycopathologia 135(2):115–118CrossRefPubMedPubMedCentralGoogle Scholar
  13. Arias RS, Dang PM, Sobolev VS (2015) RNAi-mediated control of aflatoxins in peanut: method to analyze mycotoxin production and transgene expression in the peanut/Aspergillus pathosystem. JoVE 106:e53398Google Scholar
  14. Arunyanark A, Jogloy S, Wongkaew S, Akkasaeng C, Vorasoot N, Kesmala T, Patanothai A (2010) Heritability of aflatoxin resistance traits and correlation with drought tolerance traits in peanut. Field Crops Res 117(2–3):258–264CrossRefGoogle Scholar
  15. Atehnkeng J, Ojiambo PS, Donner M, Ikotun T, Sikora RA, Cotty PJ, Bandyopadhyay R (2008) Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. Int J Food Microbiol 122(1):74–84.  https://doi.org/10.1016/j.ijfoodmicro.2007.11.062CrossRefPubMedPubMedCentralGoogle Scholar
  16. Atehnkeng J, Ojiambo PS, Cotty PJ, Bandyopadhyay R (2014) Field efficacy of a mixture of atoxigenic Aspergillus flavus link: Fr vegetative compatibility groups in preventing aflatoxin contamination in maize (Zea mays L.). Biol Control 72:62–70.  https://doi.org/10.1016/j.biocontrol.2014.02.009CrossRefGoogle Scholar
  17. Azaizeh HA, Pettit RE, Sarr BA, Phillips T (1990) Effect of peanut tannin extracts on growth of Aspergillus parasiticus and aflatoxin production. Mycopathologia 110(3):125–132CrossRefPubMedPubMedCentralGoogle Scholar
  18. Baker R, Brown R, Chen Z-Y, Cleveland T, Fakhoury A (2009) A maize lectin-like protein with antifungal activity against Aspergillus flavus. J Food Prot 72(1):120–127CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bandyopadhyay R, Cotty PJ (2013) In: Unnevehr L, Grace D (eds) Biological controls for aflatoxin reduction, vol 20. International Food Policy Res Institute, Washington, DC, pp 43–44Google Scholar
  20. Bandyopadhyay R, Ortega-Beltran A, Akande A, Mutegi C, Atehnkeng J, Kaptoge L, Senghor A, Adhikari B, Cotty P (2016) Biological control of aflatoxins in Africa: current status and potential challenges in the face of climate change. World Mycotoxin J 9(5):771–789CrossRefGoogle Scholar
  21. Bankole SA, Adenusi AA, Lawal O, Adesanya O (2010) Occurrence of aflatoxin B1 in food products derivable from ‘egusi’melon seeds consumed in southwestern Nigeria. Food Control 21(7):974–976CrossRefGoogle Scholar
  22. Battilani P, Leggieri MC, Rossi V, Giorni P (2013) AFLA-maize, a mechanistic model for Aspergillus flavus infection and aflatoxin B1 contamination in maize. Comput Electron Agric 94:38–46CrossRefGoogle Scholar
  23. Bayram Ö, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36(1):1–24.  https://doi.org/10.1111/j.1574-6976.2011.00285.xCrossRefPubMedPubMedCentralGoogle Scholar
  24. Bedre R, Rajasekaran K, Mangu VR, Timm LES, Bhatnagar D, Baisakh N (2015) Genomewide transcriptome analysis of cotton (Gossypium hirsutum L.) identifies candidate gene signatures in response to aflatoxin producing fungus Aspergillus flavus. PLoS One 10(9):e0138025Google Scholar
  25. Bello HT (2007) Phenotypic and genotypic evaluation of generations and recombinant inbred lines for response to aflatoxin. Doctoral dissertation, Texas A&M UniversityGoogle Scholar
  26. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497–516CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bennett JW, Papa KE (1988) The aflatoxigenic Aspergillus spp. Genet Plant Pathogenic Fungi.  https://doi.org/10.1016/b978-0-12-033706-4.50022-0
  28. Bennett JW, Rubin PL, Lee LS, Chen PN (1979) Influence of trace elements and nitrogen sources on versicolorin production by a mutant strain of Aspergillus parasiticus. Mycopathologia 69(3):161–166.  https://doi.org/10.1007/bf00452829CrossRefPubMedPubMedCentralGoogle Scholar
  29. Berthiller F, Cramer B, Iha MH, Krska R, Lattanzio VMT, MacDonald S, Malone RJ, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J, Tittlemier SA (2018) Developments in mycotoxin analysis: an update for 2016–2017. World Mycotoxin J 11(1):5–32.  https://doi.org/10.3920/wmj2017.2250CrossRefGoogle Scholar
  30. Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 47(3):438CrossRefGoogle Scholar
  31. Bhatnagar D, Rajasekaran K, Gilbert M, Cary JW, Magan N (2018) Advances in molecular and genomic research to safeguard food and feed supply from aflatoxin contamination. World Mycotoxin J 11(1):47–72CrossRefGoogle Scholar
  32. Bhatnagar-Mathur P, Sunkara S, Bhatnagar-Panwar M, Waliyar F, Sharma KK (2015) Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci 234:119–132CrossRefPubMedPubMedCentralGoogle Scholar
  33. Blankenship P, Cole R, Sanders T (1985) Comparative susceptibility of four experimental peanut lines and the cultivar Florunner to preharvest aflatoxin contamination. Peanut Sci 12(2):70–72CrossRefGoogle Scholar
  34. Bock CH, Cotty PJ (1999) Wheat seed colonized with atoxigenic Aspergillus flavus: characterization and production of a biopesticide for aflatoxin control. Biocontrol Sci Technol 9(4):529–543.  https://doi.org/10.1080/09583159929497CrossRefGoogle Scholar
  35. Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3(2):527–535CrossRefPubMedPubMedCentralGoogle Scholar
  36. Borgemeister C, Adda C, Sétamou M, Hell K, Djomamou B, Markham R, Cardwell K (1998) Timing of harvest in maize: effects on post harvest losses due to insects and fungi in central Benin, with particular reference to Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). Agric Ecosyst Environ 69(3):233–242CrossRefGoogle Scholar
  37. Bressac B, Puisieux A, Kew M, Volkmann M, Bozcall S, Mura JB, de la Monte S, Carlson R, Blum H, Wands J (1991) p53 mutation in hepatocellular carcinoma after aflatoxin exposure. The Lancet 338(8779):1356–1359CrossRefGoogle Scholar
  38. Brodhagen M, Keller NP (2006) Signalling pathways connecting mycotoxin production and sporulation. Mol Plant Pathol 7(4):285–301.  https://doi.org/10.1111/j.1364-3703.2006.00338.xCrossRefPubMedPubMedCentralGoogle Scholar
  39. Brooks TD, Williams WP, Windham GL, Willcox MC, Abbas HK (2005) Quantitative trait loci contributing resistance to aflatoxin accumulation in the maize inbred Mp313E. Crop Sci 45(1):171–174Google Scholar
  40. Brown RL, Cotty PJ, Cleveland TE, Widstrom NW (1993) Living maize embryo influences accumulation of aflatoxin in maize kernels. J Food Prot 56(11):967–971CrossRefPubMedPubMedCentralGoogle Scholar
  41. Brown R, Cleveland T, Payne G, Woloshuk C, Campbell K, White D (1995) Determination of resistance to aflatoxin production in maize kernels and detection of fungal colonization using an Aspergillus flavus transformant expressing Escherichia coli β-glucuronidase. Phytopathology 85(9):983–989CrossRefGoogle Scholar
  42. Brown RL, Chen Z-Y, Cleveland TE, Cotty PJ, Cary JW (2001) Variation in in vitro α-amylase and protease activity is related to the virulence of Aspergillus flavus isolates. J Food Prot 64(3):401–404CrossRefPubMedPubMedCentralGoogle Scholar
  43. Brown RL, Chen Z-Y, Warburton M, Luo M, Menkir A, Fakhoury A, Bhatnagar D (2010) Discovery and characterization of proteins associated with aflatoxin-resistance: evaluating their potential as breeding markers. Toxins 2(4):919–933CrossRefPubMedPubMedCentralGoogle Scholar
  44. Brown RL, Menkir A, Chen Z-Y, Bhatnagar D, Yu J, Yao H, Cleveland TE (2013) Breeding aflatoxin-resistant maize lines using recent advances in technologies—a review. Food Addit Contam Part A 30(8):1382–1391CrossRefGoogle Scholar
  45. Brown RL, Williams WP, Windham GL, Menkir A, Chen Z-Y (2016) Evaluation of African-bred maize germplasm lines for resistance to aflatoxin accumulation. Agronomy 6(2):24CrossRefGoogle Scholar
  46. Buchanan RL, Lewis DF (1984) Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes. Appl Environ Microbiol 48(2):306–310PubMedPubMedCentralGoogle Scholar
  47. Burgos-Hernández A, Price RL, Jorgensen-Kornman K, López-García R, Njapau H et al (2002) Decontamination of aflatoxin B1-contaminated corn by ammonium persulphate during fermentation. J Sci Food Agric 82(5):546–552CrossRefGoogle Scholar
  48. Burow GB, Nesbitt TC, Dunlap J, Keller NP (1997) Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Mol Plant-Microbe Interact 10(3):380–387.  https://doi.org/10.1094/mpmi.1997.10.3.380CrossRefGoogle Scholar
  49. Busboom K, White D (2004) Inheritance of resistance to aflatoxin production and Aspergillus ear rot of corn from the cross of inbreds B73 and Oh516. Phytopathology 94(10):1107–1115CrossRefPubMedPubMedCentralGoogle Scholar
  50. Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66(3):447–459CrossRefPubMedPubMedCentralGoogle Scholar
  51. Cambell K, Hamblin A, White D (1997) Inheritance of resistance to aflatoxin production in the cross between corn inbreds B73 and L31. Phytopathology 87:1144–1147CrossRefGoogle Scholar
  52. Campbell K, White D (1995) Evaluation of corn genotypes for resistance to Aspergillus ear rot, kernel infection, and aflatoxin production. Plant Dis 79:1039–1045CrossRefGoogle Scholar
  53. Cardwell KF, Henry SH (2004) Risk of exposure to and mitigation of effect of aflatoxin on human health: a West African example. J Toxicol Toxin Rev 23(2–3):217–247CrossRefGoogle Scholar
  54. Cary JW, Deepak B, Linz J (2000a) Aflatoxins: biological significance and regulation of biosynthesis. In: Cary JW, Linz JE, Bhatnagar D (eds) Microbial foodborne diseases: mechanisms of pathogenesis and toxin synthesis. CRC Press, Boca Raton, pp 317–361Google Scholar
  55. Cary JW, Ehrlich K, Wright M, Chang P-K, Bhatnagar D (2000b) Generation of aflR disruption mutants of Aspergillus parasiticus. Appl Microbiol Biotechnol 53(6):680–684CrossRefPubMedPubMedCentralGoogle Scholar
  56. Cary JW, Rajasekaran K, Jaynes JM, Cleveland TE (2000c) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154(2):171–181CrossRefPubMedPubMedCentralGoogle Scholar
  57. Cary JW, OBrian GR, Nielsen DM, Nierman W, Harris-Coward P et al (2007) Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Appl Microbiol Biotechnol 76(5):1107–1118.  https://doi.org/10.1007/s00253-007-1081-y
  58. Cary JW, Rajasekaran K, Brown RL, Luo M, Chen Z-Y, Bhatnagar D (2011) Developing resistance to aflatoxin in maize and cottonseed. Toxins 3(6):678–696CrossRefPubMedPubMedCentralGoogle Scholar
  59. Cary JW, Harris-Coward PY, Ehrlich KC, Mack BM, Kale SP et al (2012) NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production. Eukaryot Cell 11(9):1104–1111CrossRefPubMedPubMedCentralGoogle Scholar
  60. Cary JW, Harris-Coward P, Scharfenstein L, Mack BM, Chang PK et al (2017) The Aspergillus flavus homeobox gene, hbx1, is required for development and aflatoxin production. Toxins (Basel) 9(10).  https://doi.org/10.3390/toxins9100315
  61. Chang P-K, Ehrlich KC (2010) What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Int J Food Microbiol 138(3):189–199CrossRefPubMedPubMedCentralGoogle Scholar
  62. Chang P-K, Scharfenstein LL, Ehrlich KC, Wei Q, Bhatnagar D, Ingber BF (2012) Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biol 116(2):298–307.  https://doi.org/10.1016/j.funbio.2011.12.003CrossRefPubMedPubMedCentralGoogle Scholar
  63. Chauhan Y, Wright G, Rachaputi N (2008) Modelling climatic risks of aflatoxin contamination in maize. Aust J Exp Agric 48(3):358–366CrossRefGoogle Scholar
  64. Chauhan Y, Wright G, Rachaputi R, Holzworth D, Broome A, Krosch S, Robertson M (2010) Application of a model to assess aflatoxin risk in peanuts. J Agric Sci 148(3):341–351CrossRefGoogle Scholar
  65. Chauhan R, Singh J, Sachdev T, Basu T, Malhotra B (2016) Recent advances in mycotoxins detection. Biosens Bioelectron 81:532–545CrossRefPubMedPubMedCentralGoogle Scholar
  66. Chen Z-Y, Brown R, Lax A, Guo B, Cleveland T, Russin J (1998) Resistance to Aspergillus flavus in corn kernels is associated with a 14-kDa protein. Phytopathology 88(4):276–281CrossRefPubMedPubMedCentralGoogle Scholar
  67. Chen Z-Y, Brown R, Russin J, Lax A, Cleveland T (1999a) A corn trypsin inhibitor with antifungal activity inhibits Aspergillus flavus α-amylase. Phytopathology 89(10):902–907CrossRefPubMedPubMedCentralGoogle Scholar
  68. Chen Z-Y, Brown RL, Lax AR, Cleveland TE, Russin JS (1999b) Inhibition of plant-pathogenic fungi by a corn trypsin inhibitor overexpressed in Escherichia coli. Appl Environ Microbiol 65(3):1320–1324PubMedPubMedCentralGoogle Scholar
  69. Chen Z-Y, Brown RL, Cleveland TE, Damann KE, Russin JS (2001) Comparison of constitutive and inducible maize kernel proteins of genotypes resistant or susceptible to aflatoxin production. J Food Prot 64(11):1785–1792CrossRefPubMedPubMedCentralGoogle Scholar
  70. Chen Z-Y, Brown R, Damann K, Cleveland T (2002) Identification of unique or elevated levels of kernel proteins in aflatoxin-resistant maize genotypes through proteome analysis. Phytopathology 92(10):1084–1094CrossRefPubMedPubMedCentralGoogle Scholar
  71. Chen Z-Y, Brown R, Damann K, Cleveland T (2004) Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation. Phytopathology 94(9):938–945CrossRefPubMedPubMedCentralGoogle Scholar
  72. Chen Z-Y, Brown R, Rajasekaran K, Damann K, Cleveland T (2006) Identification of a maize kernel pathogenesis-related protein and evidence for its involvement in resistance to Aspergillus flavus infection and aflatoxin production. Phytopathology 96(1):87–95CrossRefPubMedPubMedCentralGoogle Scholar
  73. Chen ZY, Brown RL, Damann KE, Cleveland TE (2007) Identification of maize kernel endosperm proteins associated with resistance to aflatoxin contamination by Aspergillus flavus. Phytopathology 97(9):1094–1103.  https://doi.org/10.1094/phyto-97-9-1094CrossRefPubMedPubMedCentralGoogle Scholar
  74. Chen ZY, Brown RL, Damann KE, Cleveland TE (2010) PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production. Mol Plant Pathol 11(1):69–81CrossRefPubMedPubMedCentralGoogle Scholar
  75. Chen Z-Y, Brown RL, Menkir A, Cleveland TE (2012) Identification of resistance-associated proteins in closely-related maize lines varying in aflatoxin accumulation. Mol Breed 30(1):53–68.  https://doi.org/10.1007/s11032-011-9597-3CrossRefGoogle Scholar
  76. Chen Z-Y, Rajasekaran K, Brown R, Sayler R, Bhatnagar D (2014) Discovery and confirmation of genes/proteins associated with maize aflatoxin resistance. World Mycotoxin J 8(2):211–224CrossRefGoogle Scholar
  77. Chen Z-Y, Warburton M, Hawkins L, Wei Q, Raruang Y, Brown R, Zhang L, Bhatnagar D (2016) Production of the 14 kDa trypsin inhibitor protein is important for maize resistance against Aspergillus flavus infection/aflatoxin accumulation. World Mycotoxin J 9(2):215–228CrossRefGoogle Scholar
  78. Chulze S (2010) Strategies to reduce mycotoxin levels in maize during storage: a review. Food Addit Contam 27(5):651–657CrossRefGoogle Scholar
  79. Clavel D (2000) Molecular strategy for groundnut pre-harvest aflatoxin elimination: recent advances and future prospects. https://agritrop.cirad.fr
  80. Clevenger J, Marasigan K, Liakos V, Sobolev V, Vellidis G, Holbrook C, Ozias-Akins P (2016) RNA sequencing of contaminated seeds reveals the state of the seed permissive for pre-harvest aflatoxin contamination and points to a potential susceptibility factor. Toxins (Basel) 8(11).  https://doi.org/10.3390/toxins8110317
  81. Cole RJ, Sanders TH, Hill RA, Blankenship PD (1985) Mean geocarposphere temperatures that induce preharvest aflatoxin contamination of peanuts under drought stress. Mycopathologia 91(1):41–46.  https://doi.org/10.1007/bf00437286CrossRefPubMedPubMedCentralGoogle Scholar
  82. Cole R, Sobolev V, Dorner J (1993) Potentially important sources of resistance to prevention of preharvest aflatoxin contamination in peanuts. Proc Am Peanut Res Educ Soc 25:78Google Scholar
  83. Cole RJ, Dorner JW, Holbrook CC (1995) Advances in mycotoxin elimination and resistance. In: Advances in peanut science. American Peanut Research and Education Society, Stillwater, OK, pp 456–474Google Scholar
  84. Cornea CP, Ciuca M, Voaides C, Gagiu V, Pop A (2011) Incidence of fungal contamination in a Romanian bakery: a molecular approach. Rom Biotech Lett 16(1):5863–5871Google Scholar
  85. Cotty PJ (1988) Aflatoxin and sclerotial production by Aspergillus flavus: influence of pH. Phytopathology 78(9):1250.  https://doi.org/10.1094/phyto-78-1250CrossRefGoogle Scholar
  86. Cotty PJ (2006) Biocompetitive exclusion of toxigenic fungi. The mycotoxin factbook: food and feed topics, pp 179–197Google Scholar
  87. Cotty PJ, Bhatnagar D (1994) Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Appl Environ Microbiol 60(7):2248–2251PubMedPubMedCentralGoogle Scholar
  88. Cotty PJ, Jaime-Garcia R (2007) Influences of climate on aflatoxin producing fungi and aflatoxin contamination. Int J Food Microbiol 119(1–2):109–115.  https://doi.org/10.1016/j.ijfoodmicro.2007.07.060CrossRefPubMedPubMedCentralGoogle Scholar
  89. Coulibaly O, Hell K, Bandyopadhyay R, Hounkponou S, Leslie JF (2008) Mycotoxins: detection methods, management, public health and agricultural trade. CABI, UKGoogle Scholar
  90. Cuero R, Ouellet T, Yu J, Mogongwa N (2003) Metal ion enhancement of fungal growth, gene expression and aflatoxin synthesis in Aspergillus flavus: RT-PCR characterization. J Appl Microbiol 94(6):953–961.  https://doi.org/10.1046/j.1365-2672.2003.01870.xCrossRefPubMedPubMedCentralGoogle Scholar
  91. Darrah L, Lillehoj E, Zuber M, Scott G, Thompson D, West D, Widstrom N, Fortnum B (1987) Inheritance of aflatoxin B1 levels in maize kernels under modified natural inoculation with Aspergillus flavus 1. Crop Sci 27(5):869–872Google Scholar
  92. Davidson J, Hill R, Cole R, Mixon A, Henning R (1982) Field performance of two peanut cultivars relative to resistance to invasion by A. flavus and subsequent aflatoxin contamination. Proc Am Peanut Res Educ Soc 1:74–78Google Scholar
  93. Davidson J Jr, Hill R, Cole R, Mixon A, Henning R (1983) Field performance of two peanut cultivars relative to aflatoxin contamination. Peanut Sci 10(1):43–47CrossRefGoogle Scholar
  94. Davis ND, Diener UL, Agnihotri VP (1967) Production of aflatoxins B1 and G1 in chemically defined medium. Mycopathologia et Mycologia Applicata 31(3–4):251–256.  https://doi.org/10.1007/bf02053422CrossRefPubMedPubMedCentralGoogle Scholar
  95. De Lucca AJ (1998) Fungicidal and binding properties of three plant peptides. Mycopathologia 144(2):87–91CrossRefPubMedPubMedCentralGoogle Scholar
  96. Degola F, Berni E, Restivo FM (2011) Laboratory tests for assessing efficacy of atoxigenic Aspergillus flavus strains as biocontrol agents. Int J Food Microbiol 146(3):235–243.  https://doi.org/10.1016/j.ijfoodmicro.2011.02.020CrossRefPubMedPubMedCentralGoogle Scholar
  97. DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127(3):852–862CrossRefPubMedPubMedCentralGoogle Scholar
  98. Dhakal R, Chai C, Karan R, Windham GL, Williams WP, Subudhi PK (2017) Expression profiling coupled with in-silico mapping identifies candidate genes for reducing aflatoxin accumulation in maize. Front Plant Sci 8:503CrossRefPubMedPubMedCentralGoogle Scholar
  99. Dhakal R, Windham GL, Williams WP, Subudhi PK (2016) Quantitative trait loci (QTL) for reducing aflatoxin accumulation in corn. Mol Breeding 36(12)Google Scholar
  100. Dickens J (1977) Aflatoxin occurrence and control during growth, harvest, and storage of peanut. In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox Publishers, Inc., Illinois, pp 99–l05Google Scholar
  101. Diener U, Davis N (1987) Biology of Aspergillus flavus and A. parasiticus. In: US universities-CIMMYT maize aflatoxin workshop, El Batan, Mexico (Mexico), 7–11 Apr 1987, CIMMYTGoogle Scholar
  102. Dolezal AL, Shu X, OBrian GR, Nielsen DM, Woloshuk CP, Boston RS, Payne GA (2014) Aspergillus flavus infection induces transcriptional and physical changes in developing maize kernels. Front Microbiol 5(384).  https://doi.org/10.3389/fmicb.2014.00384
  103. Dorner JW (2004) Biological control of aflatoxin contamination of crops. J Toxicol Toxin Rev 23(2–3):425–450CrossRefGoogle Scholar
  104. Dorner JW (2009) Development of biocontrol technology to manage aflatoxin contamination in peanuts. Peanut Sci 36(1):60–67.  https://doi.org/10.3146/at07-002.1CrossRefGoogle Scholar
  105. Dorner JW, Horn BW (2007) Separate and combined applications of nontoxigenic Aspergillus flavus and A. parasiticus for biocontrol of aflatoxin in peanuts. Mycopathologia 163(4):215–223Google Scholar
  106. Dorner JW, Lamb M (2006) Development and commercial use of afla-guard®, an aflatoxin biocontrol agent. Mycotoxin Res 22(1):33–38CrossRefPubMedPubMedCentralGoogle Scholar
  107. Dorner JW, Cole RJ, Sanders TH, Blankenship PD (1989) Interrelationship of kernel water activity, soil temperature, maturity, and phytoalexin production in preharvest aflatoxin contamination of drought-stressed peanuts. Mycopathologia 105(2):117–128.  https://doi.org/10.1007/bf00444034CrossRefPubMedPubMedCentralGoogle Scholar
  108. Dorner JW, Cole RJ, Blankenship PD (1992) Use of a biocompetitive agent to control preharvest aflatoxin in drought stressed peanuts. J Food Prot 55(11):888–892CrossRefPubMedPubMedCentralGoogle Scholar
  109. Dorner JW, Cole RJ, Blankenship PD (1998) Effect of inoculum rate of biological control agents on preharvest aflatoxin contamination of peanuts. Biol Control 12(3):171–176CrossRefGoogle Scholar
  110. Dorner JW, Cole RJ, Wicklow DT (1999) Aflatoxin reduction in corn through field application of competitive fungi. J Food Prot 62(6):650–656CrossRefPubMedPubMedCentralGoogle Scholar
  111. Dorner JW, Cole RJ, Connick WJ, Daigle DJ, McGuire MR, Shasha BS (2003) Evaluation of biological control formulations to reduce aflatoxin contamination in peanuts. Biol Control 26(3):318–324CrossRefGoogle Scholar
  112. Doster MA, Michailides T (1995) The relationship between date of hull splitting and decay of pistachio nuts by Aspergillus species. Plant Dis (USA)Google Scholar
  113. Doster MA, Cotty PJ, Michailides TJ (2014) Evaluation of the atoxigenic Aspergillus flavus strain AF36 in pistachio orchards. Plant Dis 98(7):948–956CrossRefPubMedPubMedCentralGoogle Scholar
  114. Dowd PF, White DG (2002) Corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae) and other insect associated resistance in the maize inbred Tex6. J Econ Entomol 95(3):628–634CrossRefPubMedPubMedCentralGoogle Scholar
  115. Doyle M, Applebaum R, Brackett R, Marth E (1982) Physical, chemical and biological degradation of mycotoxins in foods and agricultural commodities. J Food Prot 45(10):964–971CrossRefPubMedPubMedCentralGoogle Scholar
  116. Drying G (1987) Handling and storage handbook. MWPS-13, Midwest Plan Service, Ames, IAGoogle Scholar
  117. Duan C-G, Wang C-H, Guo H-S (2012) Application of RNA silencing to plant disease resistance. Silence 3(1):5CrossRefPubMedPubMedCentralGoogle Scholar
  118. Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65(1):7–17CrossRefPubMedPubMedCentralGoogle Scholar
  119. Eaton DL, Groopman JD (2013) The toxicology of aflatoxins: human health, veterinary, and agricultural significance. Elsevier, AmsterdamGoogle Scholar
  120. Ehrlich KC (2014) Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations. Front Microbiol 5:50PubMedPubMedCentralGoogle Scholar
  121. Ehrlich KC, Cotty PJ (2004) An isolate of Aspergillus flavus used to reduce aflatoxin contamination in cottonseed has a defective polyketide synthase gene. Appl Microbiol Biotechnol 65(4):473–478.  https://doi.org/10.1007/s00253-004-1670-yCrossRefPubMedPubMedCentralGoogle Scholar
  122. Ehrlich KC, Montalbano BG, Cotty PJ (2003) Sequence comparison of aflR from different Aspergillus species provides evidence for variability in regulation of aflatoxin production. Fungal Genet Biol 38(1):63–74CrossRefPubMedPubMedCentralGoogle Scholar
  123. Ehrlich KC, Li P, Scharfenstein L, Chang P-K (2010) HypC, the anthrone oxidase involved in aflatoxin biosynthesis. Appl Environ Microbiol 76(10):3374–3377CrossRefPubMedPubMedCentralGoogle Scholar
  124. Espeso EA, Arst HN (2000) On the mechanism by which alkaline pH prevents expression of an acid-expressed gene. Mol Cell Biol 20(10):3355–3363CrossRefPubMedPubMedCentralGoogle Scholar
  125. Espeso EA, Tilburn J, Arst H, Penalva M (1993) pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12(10):3947–3956CrossRefPubMedPubMedCentralGoogle Scholar
  126. Failla LJ, Lynn D, Niehaus W (1986) Correlation of Zn2+ content with aflatoxin content of corn. Appl Environ Microbiol 52(1):73–74PubMedPubMedCentralGoogle Scholar
  127. Fakhoury A, Woloshuk C (1999) Amy1, the α-amylase gene of Aspergillus flavus: involvement in aflatoxin biosynthesis in maize kernels. Phytopathology 89(10):908–914CrossRefPubMedPubMedCentralGoogle Scholar
  128. Fakhoury A, Woloshuk C (2001) Inhibition of growth of Aspergillus flavus and fungal α-amylases by a lectin-like protein from Lablab purpureus. Mol Plant-microbe Interact 14(8):955–961CrossRefPubMedPubMedCentralGoogle Scholar
  129. Fanelli C, Fabbri AA (1989) Relationship between lipids and aflatoxin biosynthesis. Mycopathologia 107(2–3):115–120.  https://doi.org/10.1007/bf00707547CrossRefPubMedPubMedCentralGoogle Scholar
  130. Fanelli C, Fabbri AA, Finotti E, Passi S (1983) Stimulation of aflatoxin biosynthesis by lipophilic epoxides. Microbiology 129(6):1721–1723.  https://doi.org/10.1099/00221287-129-6-1721CrossRefGoogle Scholar
  131. Fanelli C, Fabbri AA, Brasini S, De Luca C, Passi S (1995) Effect of different inhibitors of sterol biosynthesis on both fungal growth and aflatoxin production. Nat Toxins 3(2):109–113.  https://doi.org/10.1002/nt.2620030209CrossRefPubMedPubMedCentralGoogle Scholar
  132. Farfan IDB, Gerald N, Murray SC, Isakeit T, Huang P-C, Warburton M, Williams P, Windham GL, Kolomiets M (2015) Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics. PLoS One 10(2):e0117737CrossRefPubMedPubMedCentralGoogle Scholar
  133. Fisher MC, Henk DA (2012) Sex, drugs and recombination: the wild life of Aspergillus. Mol Ecol 21(6):1305–1306.  https://doi.org/10.1111/j.1365-294x.2012.05506.xCrossRefPubMedPubMedCentralGoogle Scholar
  134. Fountain JC, Chen Z-Y, Scully BT, Kemerait RC, Lee RD, Guo B (2010) Pathogenesis-related gene expressions in different maize genotypes under drought stressed conditions. Afr J Plant Sci 4(11):433–440Google Scholar
  135. Fountain JC, Yang L, Khera P, Kemerait R, Lee R, Scully B, Varshney R, Guo B (2015) Aflatoxin production and oxidative stress in Aspergillus flavus. In: Meeting abstractGoogle Scholar
  136. Fountain JC, Koh J, Yang L, Pandey MK, Nayak SN, Bajaj P, Zhuang W-J, Chen Z-Y, Kemerait RC, Lee RD (2018) Proteome analysis of Aspergillus flavus isolate-specific responses to oxidative stress in relationship to aflatoxin production capability. Sci Rep 8(1):3430CrossRefPubMedPubMedCentralGoogle Scholar
  137. Gallo A, Solfrizzo M, Epifani F, Panzarini G, Perrone G (2016) Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium. Int J Food Microbiol 217:162–169CrossRefPubMedPubMedCentralGoogle Scholar
  138. Garber N, Cotty PJ (2006) Timing of herbicide applications may influence efficacy of aflatoxin biocontrol. In: Beltwide cotton conferences, San Antonio, TX, USA, p 11Google Scholar
  139. Gardner C, Darrah L, Zuber M, Wallin J (1987) Genetic control of aflatoxin production in maize. Plant Dis (USA)Google Scholar
  140. Garrido-Bazan V, Mahuku G, Bibbins-Martinez M, Arroyo-Bacerra A, Villalobos-López MÁ (2018) Dissection of mechanisms of resistance to Aspergillus flavus and aflatoxin using tropical maize germplasm. World Mycotoxin J 1–10Google Scholar
  141. Gembeh SV, Brown RL, Grimm C, Cleveland TE (2001) Identification of chemical components of corn kernel pericarp wax associated with resistance to Aspergillus flavus infection and aflatoxin production. J Agric Food Chem 49(10):4635–4641CrossRefPubMedPubMedCentralGoogle Scholar
  142. Georgianna DR, Payne GA (2009) Genetic regulation of aflatoxin biosynthesis: from gene to genome. Fungal Genet Biol 46(2):113–125CrossRefPubMedPubMedCentralGoogle Scholar
  143. Gilbert MK, Mack BM, Wei Q, Bland JM, Bhatnagar D, Cary JW (2016) RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus. Microbiol Res 182:150–161.  https://doi.org/10.1016/j.micres.2015.08.007CrossRefPubMedPubMedCentralGoogle Scholar
  144. Gilbert MK, Majumdar R, Rajasekaran K, Chen Z-Y, Wei Q, Sickler CM, Lebar MD, Cary JW, Frame BR, Wang K (2018) RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta 1–9Google Scholar
  145. Giorni P, Magan N, Battilani P (2009) Environmental factors modify carbon nutritional patterns and niche overlap between Aspergillus flavus and Fusarium verticillioides strains from maize. Int J Food Microbiol 130(3):213–218CrossRefPubMedPubMedCentralGoogle Scholar
  146. Girdthai T, Jogloy S, Vorasoot N, Akkasaeng C, Wongkaew S, Holbrook CC, Patanothai A (2010) Heritability of, and genotypic correlations between, aflatoxin traits and physiological traits for drought tolerance under end of season drought in peanut (Arachis hypogaea L.). Field Crops Res 118(2):169–176Google Scholar
  147. Glueck JA, Clark L, Smith O (1977) Testa comparisons of four peanut cultivars 1. Crop Sci 17(5):777–782CrossRefGoogle Scholar
  148. Gorman D, Kang M, Cleveland T, Hutchinson R (1992) Combining ability for resistance to field aflatoxin accumulation in maize grain. Plant Breed 109(4):296–303CrossRefGoogle Scholar
  149. Grace D, Mahuku G, Hoffmann V, Atherstone C, Upadhyaya HD, Bandyopadhyay R (2015) International agricultural research to reduce food risks: case studies on aflatoxins. Food Secur 7(3):569–582CrossRefGoogle Scholar
  150. Graham J (1982) Aflatoxin in peanuts: occurrence and control. Queensland Agric J 108:109Google Scholar
  151. Gressel J, Polturak G (2018) Suppressing aflatoxin biosynthesis is not a breakthrough if not useful. Pest Manag Sci 74(1):17–21CrossRefPubMedPubMedCentralGoogle Scholar
  152. Gummert M, Balingbing C, Barry G, Estevez L (2009) Management options, technologies and strategies for minimised mycotoxin contamination of rice. World Mycotoxin J 2(2):151–159CrossRefGoogle Scholar
  153. Guo BZ, Russin JS, Cleveland TE, Brown RL, Widstrom NW (1995) Wax and cutin layers in maize kernels associated with resistance to aflatoxin production by Aspergillus flavus. J Food Protect 58(3):296–300CrossRefGoogle Scholar
  154. Guo B, Chen Z-Y, Brown R, Lax A, Cleveland T, Russin J, Mehta A, Selitrennikoff C, Widstrom N (1997) Germination induces accumulation of specific proteins and antifungal activities in corn kernels. Phytopathology 87(11):1174–1178CrossRefPubMedPubMedCentralGoogle Scholar
  155. Guo B, Holbrook C, Yu J, Lee R, Lynch R (2005) Application of technology of gene expression in response to drought stress and elimination of preharvest aflatoxin contamination. Aflatoxin Food Saf 26:313–331Google Scholar
  156. Guo B, Xu G, Cao Y, Holbrook C, Lynch R (2006) Identification and characterization of phospholipase D and its association with drought susceptibilities in peanut (Arachis hypogaea). Planta 223(3):512–520CrossRefPubMedPubMedCentralGoogle Scholar
  157. Guo B, Widstrom N, Lee R, Coy A, Lynch R (2007) Registration of maize germplasm GT601 (AM-1) and GT602 (AM-2). J Plant Reg 1:153–154CrossRefGoogle Scholar
  158. Guo B, Chen X, Dang P, Scully BT, Liang X, Holbrook CC, Yu J, Culbreath AK (2008) Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticusinfection. BMC Dev Biol 8(1):12.  https://doi.org/10.1186/1471-213x-8-12CrossRefPubMedPubMedCentralGoogle Scholar
  159. Guo B, Fedorova ND, Chen X, Wan CH, Wang W, Nierman WC, Bhatnagar D, Yu J (2011) Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies. Toxins (Basel) 3(7):737–753.  https://doi.org/10.3390/toxins3070737CrossRefGoogle Scholar
  160. Guo B, Pandey MK, He G, Zhang X, Liao B, Culbreath A, Varshney RK, Nwosu V, Wilson RF, Stalker HT (2013) Recent advances in molecular genetic linkage maps of cultivated peanut. Peanut Sci 40(2):95–106CrossRefGoogle Scholar
  161. Hadavi E (2005) Several physical properties of aflatoxin-contaminated pistachio nuts: application of BGY fluorescence for separation of aflatoxin-contaminated nuts. Food Addit Contam 22(11):1144–1153.  https://doi.org/10.1080/02652030500306976CrossRefPubMedPubMedCentralGoogle Scholar
  162. Halloin J, Leigh T (1983) Screening and evaluation methods: resistance of cotton to seedling pathogens and seed deterioration. Host plant resistance research methods for insects, diseases, nematodes and spider mites in cotton. South Coop Ser Bull 280:12–16Google Scholar
  163. Hamblin A, White D (2000) Inheritance of resistance to Aspergillus ear rot and aflatoxin production of corn from Tex6. Phytopathology 90(3):292–296CrossRefPubMedPubMedCentralGoogle Scholar
  164. Hammond TM, Keller NP (2005) RNA silencing in Aspergillus nidulans is independent of RNA-dependent RNA polymerases. Genetics 169(2):607–617CrossRefPubMedPubMedCentralGoogle Scholar
  165. Hanano A, Almousally I, Shaban M, Rahman F, Hassan M, Murphy DJ (2017) Specific caleosin/peroxygenase and lipoxygenase activities are tissue-differentially expressed in date palm (Phoenix dactylifera L.) seedlings and are further induced following exposure to the toxin 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Front Plant Sci 7:2025Google Scholar
  166. Hawkins LK, Mylroie JE, Oliveira DA, Smith JS, Ozkan S, Windham GL, Williams WP, Warburton ML (2015) Characterization of the maize chitinase genes and their effect on Aspergillus flavus and aflatoxin accumulation resistance. PLoS One 10(6):e0126185CrossRefPubMedPubMedCentralGoogle Scholar
  167. Hawkins LK, Warburton ML, Tang J et al (2018) Survey of candidate genes for maize resistance to infection by Aspergillus favus and/or afatoxin contamination. Toxins (Basel).  https://doi.org/10.3390/toxins10020061
  168. Heathcote JG, Hibbert J (1978) Aflatoxins: chemical and biological aspects. Elsevier Scientific Publishing Co, AmsterdamGoogle Scholar
  169. Hell K, Mutegi C (2011) Aflatoxin control and prevention strategies in key crops of Sub-Saharan Africa. Afr J Microbiol Res 5(5):459–466Google Scholar
  170. Hell K, Cardwell KF, Setamou M, Poehling HM (2000) The influence of storage practices on aflatoxin contamination in maize in four agroecological zones of Benin, West Africa. J Stored Prod Res 36(4):365–382.  https://doi.org/10.1016/S0022-474X(99)00056-9
  171. Hell K, Fandohan P, Bandyopadhyay R, Kiewnick S, Sikora R, Cotty PJ (2008) Pre-and post-harvest management of aflatoxin in maize: an African perspective. In: Leslie JF, Bandyopadhyay R, Viscont A (eds) Mycotoxins: detection methods, management, public health and agricultural trade. CAB International, Wallingford, pp 219–229CrossRefGoogle Scholar
  172. Hell K, Mutegi C, Fandohan P (2010) Aflatoxin control and prevention strategies in maize for Sub-Saharan Africa. Afr J Microbiol Res 425:534Google Scholar
  173. Henry WB, Williams WP, Windham GL, Hawkins LK (2009) Evaluation of maize inbred lines for resistance to Aspergillus and Fusarium ear rot and mycotoxin accumulation. Agron J 101:1219–1226.  https://doi.org/10.2134/agronj2009.0004CrossRefGoogle Scholar
  174. Henry WB, Windham GL, Blanco MH (2012) Evaluation of maize germplasm for resistance to aflatoxin accumulation. Agronomy 2(1):28–39CrossRefGoogle Scholar
  175. Henry WB, Windham GL, Rowe DE, Blanco MH, Murray SC, Williams WP (2013) Diallel analysis of diverse maize germplasm lines for resistance to aflatoxin accumulation. Crop Sci 53:394–402.  https://doi.org/10.2135/cropsci2012.04.0240CrossRefGoogle Scholar
  176. Hicks JK, Yu JH, Keller NP, Adams TH (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA Gα protein-dependent signaling pathway. EMBO J 16(16):4916–4923CrossRefPubMedPubMedCentralGoogle Scholar
  177. Holbrook CC, Anderson WF, Pittman RN (1993) Selection of a core collection from the US germplasm collection of peanut. Crop Sci 33(4):859–861CrossRefGoogle Scholar
  178. Holbrook CC, Matheron ME, Wilson DM, Anderson WF, Will ME, Norden AJ (1994) Development of a large-scale field system for screening peanut for resistance to preharvest aflatoxin contamination. Peanut Sci 21(1):20–22CrossRefGoogle Scholar
  179. Holbrook C, Ozias-Akins P, Timper P, Wilson D, Cantonwine E, Guo B, Sullivan D, Dong W (2008) Research from the coastal plain experiment station, Tifton, Georgia, to minimize aflatoxin contamination in peanut. Toxin Rev 27(3–4):391–410CrossRefGoogle Scholar
  180. Holbrook CC, Guo B, Wilson D, Timper P (2009) The US breeding program to develop peanut with drought tolerance and reduced aflatoxin contamination. Peanut Sci 36(1):50–53CrossRefGoogle Scholar
  181. Holscher K (2000) Integrated pest management of stored grain insects: current status and future concerns. In: Proceeding of 12th integrated crop management conference, pp 41–47. https://lib.dr.iastate.edu/icm/2000/proceedings/6
  182. Hsieh DPH (1989) Potential human health hazards of mycotoxins. In: Natori S, Hashimoto K, Ueno Y (eds) Mycotoxins and phycotoxins. Elsevier, Amsterdam, pp 69–80Google Scholar
  183. Huang Z, White DG, Payne GA (1997) Corn seed proteins inhibitory to Aspergillus flavus and aflatoxin biosynthesis. Phytopathology 87(6):622–627CrossRefPubMedPubMedCentralGoogle Scholar
  184. IARC (2015) Mycotoxin control in low-and middle-income countries. International Agency for Research on Cancer Lyon, FranceGoogle Scholar
  185. ICRISAT (2009) Aflatoxin timeline. https://www.icrisat.org/aflatoxin-timeline
  186. Idris YM, Mariod AA, Elnour IA, Mohamed AA (2010) Determination of aflatoxin levels in Sudanese edible oils. Food Chem Toxicol 48(8–9):2539–2541CrossRefPubMedPubMedCentralGoogle Scholar
  187. Igawa T, Takahashi-Ando N, Ochiai N, Ohsato S, Shimizu T, Kudo T, Yamaguchi I, Kimura M (2007) Reduced contamination by the Fusarium mycotoxin zearalenone in maize kernels through genetic modification with a detoxification gene. Appl Environ Microbiol 73(5):1622–1629CrossRefPubMedPubMedCentralGoogle Scholar
  188. Jacks T, De Lucca A, Rajasekaran K, Stromberg K, van Pée K-H (2000) Antifungal and peroxidative activities of nonheme chloroperoxidase in relation to transgenic plant protection. J Agric Food Chem 48(10):4561–4564CrossRefPubMedPubMedCentralGoogle Scholar
  189. Jacks TJ, Cary JW, Rajasekaran K, Cleveland III TE, Van Pee K-H (2004) Transformation of plants with a chloroperoxidase gene to enhance disease resistance. Patent No. 6,703,540. US Patent and Trademark Office, Washington, DCGoogle Scholar
  190. Jane C, Kiprop E, Mwamburi L (2012) Biocontrol of aflatoxins in corn using atoxigenic Aspergillus flavus. IJSR 2319–7064Google Scholar
  191. Jayashree T, Praveen Rao J, Subramanyam C (2000) Regulation of aflatoxin production by Ca2+/calmodulin-dependent protein phosphorylation and dephosphorylation. FEMS Microbiol Lett 183(2):215–219.  https://doi.org/10.1111/j.1574-6968.2000.tb08960.xCrossRefPubMedPubMedCentralGoogle Scholar
  192. Ji C, Norton R, Wicklow D, Dowd P (2000) Isoform patterns of chitinase and β-1, 3-glucanase in maturing corn kernels (Zea mays L.) associated with Aspergillus flavus milk stage infection. J Agric Food Chem 48(2):507–511Google Scholar
  193. Ji C, Fan Y, Zhao L (2016) Review on biological degradation of mycotoxins. Anim Nutr 2(3):127–133CrossRefPubMedPubMedCentralGoogle Scholar
  194. Jiang H, Ren X, Wang S, Liao B (2006) Durability of resistance to Aspergillus flavus infection and effect of intact testa without injury on aflatoxin production in peanut. Acta Agron Sin 32(6):851–855Google Scholar
  195. Jiang T, Zhou B, Luo M, Abbas HK, Kemerait R, Lee RD, Scully BT, Guo B (2011) Expression analysis of stress-related genes in kernels of different maize (Zea mays L.) inbred lines with different resistance to aflatoxin contamination. Toxins (Basel) 3(6):538–550.  https://doi.org/10.3390/toxins3060538
  196. Joint FAO, WHO Expert Committee on Food Additives (2006) Safety evaluation of certain food additives, vol 56. World Health Organization, GenevaGoogle Scholar
  197. Jwanny E, El-Sayed S, Salem A, Shehata A (2001) Characterization and antifungal evaluation of chitinase and laminarinases from sugarbeet leaves. Pak J Biol Sci 4:271–276CrossRefGoogle Scholar
  198. Kaaya A, Kyamuhangire W, Kyamanywa S (2006) Factors affecting aflatoxin contamination of harvested maize in the three agroecological zones of Uganda. J Appl Sci 6:2401–2407CrossRefGoogle Scholar
  199. Kabak B, Dobson AD, Var IIL (2006) Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev Food Sci Nutr 46(8):593–619CrossRefPubMedPubMedCentralGoogle Scholar
  200. Kanyika BTN, Lungu D, Mweetwa AM, Kaimoyo E, Njung’e VM, Monyo ES, Siambi M, He G, Prakash CS, Zhao Y (2015) Identification of groundnut (Arachis hypogaea) SSR markers suitable for multiple resistance traits QTL mapping in African germplasm. Electron J Biotechnol 18(2):61–67CrossRefGoogle Scholar
  201. Keller NP, Nesbitt C, Sarr B, Phillips TD, Burow GB (1997) pH regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathology 87(6):643–648.  https://doi.org/10.1094/phyto.1997.87.6.643CrossRefPubMedPubMedCentralGoogle Scholar
  202. Kelley RY, Gresham C, Harper J, Bridges SM, Warburton ML, Hawkins LK, Pechanova O, Peethambaran B, Pechan T, Luthe DS, Mylroie JE, Ankala A, Ozkan S, Henry WB, Williams WP (2010) Integrated database for identifying candidate genes for Aspergillus flavus resistance in maize. BMC Bioinform 11(Suppl 6):S25.  https://doi.org/10.1186/1471-2105-11-s6-s25CrossRefGoogle Scholar
  203. Kelley RY, Williams WP, Mylroie JE, Boykin DL, Harper JW, Windham GL, Ankala A, Shan X (2012) Identification of maize genes associated with host plant resistance or susceptibility to Aspergillus flavus infection and aflatoxin accumulation. PLoS One 7(5):e36892CrossRefPubMedPubMedCentralGoogle Scholar
  204. Kim JH, Campbell B, Molyneux R, Mahoney N, Chan K, Yu J, Wilkinson J, Cary J, Bhatnagar D, Cleveland T (2006) Gene targets for fungal and mycotoxin control. Mycotoxin Res 22(1):3–8CrossRefPubMedPubMedCentralGoogle Scholar
  205. Kisyombe CT, Beute M, Payne G (1985) Field evaluation of peanut genotypes for resistance to infection by Aspergillus parasiticus. Peanut Sci 12(1):12–17CrossRefGoogle Scholar
  206. Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel K-H (2013) Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. Proc Nat Acad Sci 110(48):19324–19329CrossRefPubMedPubMedCentralGoogle Scholar
  207. Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A (2016) An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog 12(10):e1005901CrossRefPubMedPubMedCentralGoogle Scholar
  208. Kolosova A, Stroka J (2011) Substances for reduction of the contamination of feed by mycotoxins: a review. World Mycotoxin J 4(3):225–256CrossRefGoogle Scholar
  209. Kulkarni L, Sharief Y, Sarma V (1967) Asiriya Mwitunde groundnut gives good results in Hyderabad. Indian Farming 17(9):9–12Google Scholar
  210. Kusuma V, Yugandhar G, Ajay B, Gowda M, Upadhyaya H (2007) Identification of sources of multiple disease resistance in groundnut (Arachis hypogaea L.) mini core. In: ISOR National Seminar, 2007. Directorate of Oilseeds Research Hyderabad, pp 29–31Google Scholar
  211. Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A, Bellin D (2014) Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genom 15(1):710CrossRefGoogle Scholar
  212. Lanubile A, Muppirala UK, Severin AJ, Marocco A, Munkvold GP (2015) Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum. BMC Genom 16(1):1089CrossRefGoogle Scholar
  213. Lanubile A, Maschietto V, Battilani P, Marocco A (2017) Infection with toxigenic and atoxigenic strains of Aspergillus flavus induces different transcriptional signatures in maize kernels. J Plant Interact 12(1):21–30Google Scholar
  214. Lanyasunya T, Wamae L, Musa H, Olowofeso O, Lokwaleput I (2005) The risk of mycotoxins contamination of dairy feed and milk on smallholder dairy farms in Kenya. Pakistan J Nutr 4(3):162–169CrossRefGoogle Scholar
  215. Lei Y, Wang S, Li D, Jiang H, Liao B (2004) Evaluation of resistance to aflatoxin production among peanut germplasm with resistance to bacterial wilt. Chin J Oil Crop Sci 26(1):69–71Google Scholar
  216. Lei Y, Liao B-S, Wang S-Y, Zhang Y-B, Li D, Jiang H-F (2006) A SCAR marker for resistance to Aspergillus flavus in peanut (Arachis hypogaea L.). Hereditas 28(9):1107–1111Google Scholar
  217. Lewis L, Onsongo M, Njapau H, Schurz-Rogers H, Luber G, Kieszak S, Nyamongo J, Backer L, Dahiye AM, Misore A (2005) Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ Health Perspect 113(12):1763CrossRefPubMedPubMedCentralGoogle Scholar
  218. Li R, Kang M, Moreno O, Pollak L (2002) Field resistance to Aspergillus flavus from exotic maize (Zea mays L.) germplasm. Plant Genet Resour Newsl 11–15Google Scholar
  219. Liang X, Zhou G, Pan R (2003) Wax and cuticle of peanut seed coat in relation to infection and aflatoxin production by Aspergillus flavus. J Trop Subtrop 11:11–14Google Scholar
  220. Liang XQ, Holbrook CC, Lynch RE, Guo BZ (2005) β-1,3-Glucanase activity in peanut seed (Arachis hypogaea) is induced by inoculation with Aspergillus flavus and copurifies with a conglutin-like protein. Phytopathology 95.  https://doi.org/10.1094/phyto-95-0506
  221. Liang XQ, Luo M, Guo BZ (2006) Resistance mechanisms to Aspergillus flavus infection and aflatoxin contamination in peanut (Arachis hypogaea). Plant Pathol J 5.  https://doi.org/10.3923/ppj.2006.115.124
  222. Liang X, Zhou G, Hong Y, Chen X, Liu H, Li S (2009) Overview of research progress on peanut (Arachis hypogaea L.) host resistance to aflatoxin contamination and genomics at the Guangdong Academy of Agricultural Sciences. Peanut Sci 36(1):29–34Google Scholar
  223. Liao B, Lei Y, Wang S, Li D, Jiang H, Ren X, Liao B, Lei Y, Wang S, Li D (2003) Aflatoxin resistance in bacterial wilt resistant groundnut germplasm. Int Arachis News Lett 23:23Google Scholar
  224. Liao B, Zhuang W, Tang R, Zhang X, Shan S, Jiang H, Huang J (2009) Peanut aflatoxin and genomics research in China: progress and perspectives. Peanut Science 36(1):21–28CrossRefGoogle Scholar
  225. Li SL (2006) Research progress of peanut resistance to Aspergillus flavus in Guangdong. Guangdong Agric Sci 10:17–20Google Scholar
  226. Lohmar JM, Harris-Coward PY, Cary JW, Dhingra S, Calvo AM (2016) rtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in Aspergillus flavus. Appl Microbiol Biotechnol 100(11):5029–5041CrossRefPubMedPubMedCentralGoogle Scholar
  227. Lozovaya VV, Waranyuwat A, Widholm JM (1998) β-l, 3-glucanase and resistance to Aspergillus flavus infection in maize. Crop Sci 38(5):1255–1260CrossRefGoogle Scholar
  228. Lubulwa A, Davis J (1994) Estimating the social costs of the impacts of fungi and aflatoxins in maize and peanuts. In: Highley E, Wright EJ, Banks HJ, Champ BR (eds) Stored product protection. Proceedings of the 6th international working conference on stored-product protection. CAB International, Wallingford, UK, pp 1017–1042Google Scholar
  229. Luchese RH, Harrigan WF (1993) Biosynthesis of aflatoxin-the role of nutritional factors. J Appl Bacteriol 74(1):5–14.  https://doi.org/10.1111/j.1365-2672.1993.tb02989.xCrossRefPubMedPubMedCentralGoogle Scholar
  230. Luo M, Dang P, Bausher MG, Holbrook CC, Lee RD, Lynch RE, Guo BZ (2005) Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea). Phytopathology 95.  https://doi.org/10.1094/phyto-95-0381
  231. Luo M, Liu J, Lee R, Guo B (2008) Characterization of gene expression profiles in developing kernels of maize (Zea mays) inbred Tex6. Plant Breed 127(6):569–578CrossRefGoogle Scholar
  232. Luo M, Liu J, Lee RD, Scully BT, Guo B (2010) Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray. J Integr Plant Biol 52(12):1059–1074CrossRefPubMedPubMedCentralGoogle Scholar
  233. Luo M, Brown RL, Chen Z-Y, Menkir A, Yu J, Bhatnagar D (2011) Transcriptional profiles uncover Aspergillus flavus-induced resistance in maize kernels. Toxins 3(7):766CrossRefPubMedPubMedCentralGoogle Scholar
  234. Lutfy O, Noor SM, Abbas K, Marhaban M (2008) Some control strategies in agricultural grain driers: a review. J Food Agric Environ 6(2):74Google Scholar
  235. Magbanua ZV, De Moraes CM, Brooks T, Williams WP, Luthe DS (2007) Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant-Microbe Interact 20(6):697–706CrossRefPubMedPubMedCentralGoogle Scholar
  236. Magbanua ZV, Williams WP, Luthe DS (2013) The maize rachis affects Aspergillus flavus spread during ear development. Maydica 58(2):182–188Google Scholar
  237. Mahoney N, Molyneux RJ (2004) Phytochemical inhibition of aflatoxigenicity in Aspergillus flavus by constituents of walnut (Juglans regia). J Agric Food Chem 52(7):1882–1889CrossRefPubMedPubMedCentralGoogle Scholar
  238. Mahuku G, Warburton ML, Makumbi D, San Vincente F (2013) Managing aflatoxin contamination of maize: developing host resistance. International Food Policy Research Institute (IFPRI), Washington, DCGoogle Scholar
  239. Majumdar R, Rajasekaran K, Cary JW (2017a) RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: concepts and considerations. Front Plant Sci 8:200PubMedPubMedCentralGoogle Scholar
  240. Majumdar R, Rajasekaran K, Sickler C, Lebar M, Musungu BM, Fakhoury AM, Payne GA, Geisler M, Carter-Wientjes C, Wei Q (2017b) The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination. Front Plant Sci 8:1758CrossRefPubMedPubMedCentralGoogle Scholar
  241. Majumdar R, Lebar M, Mack B, Minocha R, Minocha S, Carter-Wientjes C, Sickler C, Rajasekaran K, Cary JW (2018) The Aspergillus flavus spermidine synthase (spds) gene is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels. Front Plant Sci 9(317).  https://doi.org/10.3389/fpls.2018.00317
  242. Mallikarjunaiah NH, Jayapala N, Puttaswamy H, Ramachandrappa NS (2017) Characterization of non-aflatoxigenic strains of Aspergillus flavus as potential biocontrol agent for the management of aflatoxin contamination in groundnut. Microb Pathog 102:21–28CrossRefGoogle Scholar
  243. Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46(1):273–301.  https://doi.org/10.1146/annurev.phyto.121307.094843CrossRefPubMedPubMedCentralGoogle Scholar
  244. Masanga JO, Matheka JM, Omer RA, Ommeh SC, Monda EO, Alakonya AE (2015) Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture. Plant Cell Rep 34(8):1379–1387CrossRefPubMedPubMedCentralGoogle Scholar
  245. Maupin L, Clements M, White D (2003) Evaluation of the MI82 corn line as a source of resistance to aflatoxin in grain and use of BGYF as a selection tool. Plant Dis 87(9):1059–1066CrossRefPubMedPubMedCentralGoogle Scholar
  246. Mauro A, Battilani P, Cotty PJ (2015) Atoxigenic Aspergillus flavus endemic to Italy for biocontrol of aflatoxins in maize. Biocontrol 60(1):125–134CrossRefGoogle Scholar
  247. Mauro A, Garcia-Cela E, Pietri A, Cotty PJ, Battilani P (2018) Biological control products for aflatoxin prevention in Italy: commercial field evaluation of atoxigenic Aspergillus flavus active ingredients. Toxins 10(1):30CrossRefGoogle Scholar
  248. Mayfield K, Murray S, Rooney W, Isakeit T, Odvody G (2011) Confirmation of QTL reducing aflatoxin in maize testcrosses. Crop Sci 51(6):2489–2498CrossRefGoogle Scholar
  249. Mayfield K, Betrán FJ, Isakeit T, Odvody G, Murray SC, Rooney WL, Landivar JC (2012) Registration of maize germplasm lines Tx736, Tx739, and Tx740 for reducing preharvest aflatoxin accumulation. J Plant Registrations 6(1):88–94CrossRefGoogle Scholar
  250. McDonald T, Brown D, Keller NP, Hammond TM (2005) RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant-Microbe Interact 18(6):539–545CrossRefPubMedPubMedCentralGoogle Scholar
  251. McMillian W, Widstrom N, Wilson D (1993) Registration of GT-MAS: gk maize germplasm. Crop Sci 33(4):882CrossRefGoogle Scholar
  252. Mehan VK (1989) Screening groundnuts for resistance to seed invasion by Aspergillus flavus and to aflatoxin production. In: McDonald D, Mehan VK, Hall SD (eds) Aflatoxin contamination of groundnut. Proceedings of international workshop. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 323–334Google Scholar
  253. Mehan VK, McDonald D (1980) Screening for resistance to Aspergillus flavus invasion and aflatoxin production in groundnuts. Groundnut improvement program occasional paper no. 2. ICRISAT, Patancheru (limited distribution)Google Scholar
  254. Mehan V, McDonald D (1984) Research on the aflatoxin problem in groundnut at ICRISAT. Plant Soil 79(2):255–260CrossRefGoogle Scholar
  255. Mehan V, McDonald D, Lalitha B (1983) Effect of season, location and field-drying treatment on in vitro seed colonization of groundnut genotypes by Aspergillus flavus. Oleagineux (Paris) 38(10):553–559Google Scholar
  256. Mehan V, McDonald D, Ramakrishna N (1986a) Varietal resistance in peanut to aflatoxin production. Peanut Sci 13(1):7–10CrossRefGoogle Scholar
  257. Mehan V, McDonald D, Ramakrishna N, Williams J (1986b) Effects of genotype and date of harvest on infection of peanut seed by Aspergillus flavus and subsequent contamination with aflatoxin. Peanut Sci 13(2):46–50CrossRefGoogle Scholar
  258. Mehan V, McDonald D, Rajagopalan K (1987) Resistance of peanut genotypes to seed infection by Aspergillus flavus in field trials in India. Peanut Sci 14(1):17–21CrossRefGoogle Scholar
  259. Mehan V, McDonald D, Haravu L, Jayanthi S (1991) The groundnut aflatoxin problem review and literature database. International Crops Research Institute for the Semi-Arid Tropics, PatancheruGoogle Scholar
  260. Mehanathan M, Bedre R, Mangu V, Rajasekaran K, Bhatnagar D, Baisakh N (2018) Identification of candidate resistance genes of cotton against Aspergillus flavus infection using a comparative transcriptomics approach. Physiol Mol Biol Plants 1–7Google Scholar
  261. Menkir A, Brown RL, Bandyopadhyay R, Cleveland TE (2008) Registration of six tropical maize germplasm lines with resistance to aflatoxin contamination. J Plant Regist 2(3):246–250CrossRefGoogle Scholar
  262. Meyers DM, Obrian G, Du W, Bhatnagar D, Payne G (1998) Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol 64(10):3713–3717PubMedPubMedCentralGoogle Scholar
  263. Micali CO, Neumann U, Grunewald D, Panstruga R, O’connell R (2011) Biogenesis of a specialized plant–fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13(2):210–226Google Scholar
  264. Mideros SX, Windham GL, Williams WP, Nelson RJ (2012) Tissue-specific components of resistance to Aspergillus ear rot of maize. Phytopathology 102(8):787–793CrossRefPubMedPubMedCentralGoogle Scholar
  265. Mideros SX, Warburton ML, Jamann TM, Windham GL, Williams WP, Nelson RJ (2014) Quantitative trait loci influencing mycotoxin contamination of maize: analysis by linkage mapping, characterization of near-isogenic lines, and meta-analysis. Crop Sci 54(1):127–142CrossRefGoogle Scholar
  266. Milla S, Isleib T, Stalker H (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48(1):1–11Google Scholar
  267. Mitchell NJ, Bowers E, Hurburgh C, Wu F (2016) Potential economic losses to the USA corn industry from aflatoxin contamination. Food Addit Contam: Part A 33(3):540–550CrossRefGoogle Scholar
  268. Mitter N, Worrall EA, Robinson KE, Li P, Jain RG et al (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3(2):16207CrossRefPubMedPubMedCentralGoogle Scholar
  269. Mixon A (1980) Potential for aflatoxin contamination in peanuts (Arachis hypogaea L.) before and soon after harvest—a review 1. J Environ Qual 9(3):344–349Google Scholar
  270. Mixon A (1986) Reducing aspergillus species infection of peanut seed using resistant genotypes 1. J Environ Qual 15(2):101–103CrossRefGoogle Scholar
  271. Mixon AC, Rogers KM (1973) Peanut accessions resistant to seed infection by Aspergillus flavus 1. Agron J 65(4):560–562CrossRefGoogle Scholar
  272. Mixon A, Bell D, Wilson D (1984) Effect of chemical and biological agents on the incidence of Aspergillus flavus and aflatoxin contamination of peanut seed [Georgia]. Phytopathology 74(12):1440–1444CrossRefGoogle Scholar
  273. Mohammadi M, Anoop V, Gleddie S, Harris LJ (2011) Proteomic profiling of two maize inbreds during early gibberella ear rot infection. Proteomics 11(18):3675–3684CrossRefPubMedPubMedCentralGoogle Scholar
  274. Montibus M, Pinson-Gadais L, Richard-Forget F, Barreau C, Ponts N (2015) Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Cri Rev Microbiol 41(3):295–308CrossRefGoogle Scholar
  275. Moore KG, Price MS, Boston RS, Weissinger AK, Payne GA (2004) A chitinase from Tex6 maize kernels inhibits growth of Aspergillus flavus. Phytopathology 94(1):82–87CrossRefPubMedPubMedCentralGoogle Scholar
  276. Murdock LL, Margam V, Baoua I, Balfe S, Shade RE (2012) Death by desiccation: effects of hermetic storage on cowpea bruchids. J Stored Prod Res 49:166–170.  https://doi.org/10.1016/j.jspr.2012.01.002CrossRefGoogle Scholar
  277. Murphy PA, Hendrich S, Landgren C, Bryant CM (2006) Food mycotoxins: an update. J Food Sci 71(5):51–65CrossRefGoogle Scholar
  278. Mutegi C, Wagacha J, Christie M, Kimani J, Karanja L (2013) Effect of storage conditions on quality and aflatoxin contamination of peanuts (Arachis hypogaea L.). Int J Agric Sci 3(10):746–758Google Scholar
  279. Mylroie J, Warburton M, Wilkinson J (2013) Development of a gene-based marker correlated to reduced aflatoxin accumulation in maize. Euphytica 194(3):431–441CrossRefGoogle Scholar
  280. Naidoo G, Forbes A, Paul C, White D, Rocheford T (2002) Resistance to Aspergillus ear rot and aflatoxin accumulation in maize F1 hybrids. Crop Sci 42(2):360–364CrossRefGoogle Scholar
  281. Naito Y, Ui-Tei K (2012) siRNA design software for a target gene-specific RNA interference. Front Genet 3:102CrossRefPubMedPubMedCentralGoogle Scholar
  282. Naito Y, Yoshimura J, Morishita S, Ui-Tei K (2009) siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinfo 10(1):392Google Scholar
  283. Nakai VK, de Oliveira Rocha L, Gonçalez E, Fonseca H, Ortega EMM, Corrêa B (2008) Distribution of fungi and aflatoxins in a stored peanut variety. Food Chem 106(1):285–290CrossRefGoogle Scholar
  284. Nayak SN, Agarwal G, Pandey MK, Sudini HK, Jayale AS, Purohit S, Desai A, Wan L, Guo B, Liao B, Varshney RK (2017) Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in vitro seed colonization. Sci Rep 7(1):9659.  https://doi.org/10.1038/s41598-017-09260-8CrossRefPubMedPubMedCentralGoogle Scholar
  285. Nesci A, Passone MA, Barra P, Girardi N, Garcia D et al (2016) Prevention of aflatoxin contamination in stored grains using chemical strategies. Curr Opin Food Sci 11:56–60CrossRefGoogle Scholar
  286. Nielsen K, Payne GA, Boston RS (2001) Maize ribosome-inactivating protein inhibits normal development of Aspergillus nidulans and Aspergillus flavus. Mol Plant-Microbe Interact 14(2):164–172CrossRefPubMedPubMedCentralGoogle Scholar
  287. Niu C, Akasaka-Kennedy Y, Faustinelli P, Joshi M, Rajasekaran K, Yang H, Chu Y, Cary J, Ozias-Akins P (2009) Antifungal activity in transgenic peanut (Arachis hypogaea L.) conferred by a nonheme chloroperoxidase gene. Peanut Sci 36(2):126–132Google Scholar
  288. Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22(9):3130–3141CrossRefPubMedPubMedCentralGoogle Scholar
  289. Obrian GR, Georgianna DR, Wilkinson JR, Yu J, Abbas HK, Bhatnagar D, Cleveland TE, Nierman W, Payne GA (2007) The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia 99(2):232–239.  https://doi.org/10.3852/mycologia.99.2.232CrossRefGoogle Scholar
  290. Odvody G, Spencer N, Remmers J (1997) A description of silk cut, a stress-related loss of kernel integrity in preharvest maize. Plant Dis 81(5):439–444CrossRefPubMedPubMedCentralGoogle Scholar
  291. Ogundero VW (1987) Temperature and aflatoxin production by Aspergillus flavus and A. parasiticus strains from Nigerian groundnuts. J Basic Microbiol 27(9):511–514Google Scholar
  292. Ojiambo P, Battilani P, Cary J, Bluhm B, Carbone I (2018) Cultural and genetic approaches to manage aflatoxin contamination: recent insights provide opportunities for improved control. Phytopathology 108(9).  https://doi.org/10.1094/phyto-04-18-0134-rvw
  293. Olarte RA, Horn BW, Dorner JW, Monacell JT, Singh R, Stone EA, Carbone I (2012) Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus and evidence for cryptic heterokaryosis. Mol Ecol 21(6):1453–1476.  https://doi.org/10.1111/j.1365-294x.2011.05398.xCrossRefPubMedPubMedCentralGoogle Scholar
  294. Otsuki T, Wilson JS, Sewadeh M (2001) Saving two in a billion: quantifying the trade effect of European food safety standards on African exports. Food Policy 26(5):495–514CrossRefGoogle Scholar
  295. Ozias-Akins P, Gill R, Yang H, Lynch R (1999) Genetic engineering of peanut: progress with Bt, peroxidase, peptidyl MIM D4E1, and lipoxygenase. In: Proceedings of the USDA-ARS 1999 aflatoxin elimination workshop, pp 69–70Google Scholar
  296. Ozias-Akins P, Niu C, Joshi M, Deng Y-Y, Holbrook C, Lynch R (2002) Genetic engineering of peanut for reduction of aflatoxin contamination. In: Aflatoxin elimination workshop proceedings, p 71Google Scholar
  297. Panstruga R (2003) Establishing compatibility between plants and obligate biotrophic pathogens. Curr Opin Plant Biol 6(4):320–326CrossRefPubMedPubMedCentralGoogle Scholar
  298. Park HS, Nam TY, Han KH, Kim SC, Yu JH (2014) VelC positively controls sexual development in Aspergillus nidulans. PLoS One 9(2):e89883.  https://doi.org/10.1371/journal.pone.0089883CrossRefPubMedPubMedCentralGoogle Scholar
  299. Parsons M, Munkvold G (2010) Relationships of immature and adult thrips with silk-cut, fusarium ear rot and fumonisin B1 contamination of maize in California and Hawaii. Plant Pathol 59(6):1099–1106CrossRefGoogle Scholar
  300. Paul C, Naidoo G, Forbes A, Mikkilineni V, White D, Rocheford T (2003) Quantitative trait loci for low aflatoxin production in two related maize populations. Theor Appl Genet 107(2):263–270CrossRefPubMedPubMedCentralGoogle Scholar
  301. Payne GA, Brown MP (1998) Genetics and physiology of aflatoxin biosynthesis. Annu Rev Phytopathol 36(1):329–362.  https://doi.org/10.1146/annurev.phyto.36.1.329
  302. Payne GA, Hagler W (1983) Effect of specific amino acids on growth and aflatoxin production by Aspergillus parasiticus and Aspergillus flavus in defined media. Appl Environ Microbiol 46(4):805–812PubMedPubMedCentralGoogle Scholar
  303. Payne G, Cassel D, Adkins C (1986) Reduction of aflatoxin contamination in corn by irrigation and tillage. Phytopathology 76(7):679–684CrossRefGoogle Scholar
  304. Payne G, Nystrom G, Bhatnagar D, Cleveland T, Woloshuk C (1993) Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus. Appl Environ Microbiol 59(1):156–162PubMedPubMedCentralGoogle Scholar
  305. Payton P, Kottapalli KR, Rowland D, Faircloth W, Guo B, Burow M, Puppala N, Gallo M (2009) Gene expression profiling in peanut using high density oligonucleotide microarrays. BMC Genom 10(1):265CrossRefGoogle Scholar
  306. Pechanova O, Pechan T (2015) Maize-pathogen interactions: an ongoing combat from a proteomics perspective. Int J Mol Sci 16(12):28429–28448CrossRefPubMedPubMedCentralGoogle Scholar
  307. Pechanova O, Pechan T, Williams WP, Luthe DS (2011) Proteomic analysis of the maize rachis: potential roles of constitutive and induced proteins in resistance to Aspergillus flavus infection and aflatoxin accumulation. Proteomics 11(1):114–127CrossRefPubMedPubMedCentralGoogle Scholar
  308. Peethambaran B, Hawkins L, Windham GL, Williams WP, Luthe DS (2010) Anti-fungal activity of maize silk proteins and role of chitinases in Aspergillus flavus resistance. Toxin Rev 29(1):27–39.  https://doi.org/10.3109/15569540903402874CrossRefGoogle Scholar
  309. Pettit R, Azaizeh H, Taber R, Szerszen J, Smith O (1989) Screening groundnut cultivars for resistance to Aspergillus flavus, Aspergillus parasiticus, and aflatoxin contamination. In: International workshop on aflatoxin contamination of groundnut, Patancheru, AP (India), 6–9 Oct 1987, ICRISAT, PatancheruGoogle Scholar
  310. Pitt J, Hocking AD (2006) Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. Mycopathologia 162(3):233–243CrossRefPubMedPubMedCentralGoogle Scholar
  311. Power IL, Dang PM, Sobolev VS, Orner VA, Powell JL, Lamb MC, Arias RS (2017) Characterization of small RNA populations in non-transgenic and aflatoxin-reducing-transformed peanut. Plant Sci 257:106–125CrossRefPubMedPubMedCentralGoogle Scholar
  312. Prasad K, Bhatnagar-Mathur P, Waliyar F, Sharma KK (2013) Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J Plant Biochem Biotechnol 22(2):222–233CrossRefGoogle Scholar
  313. Premlata S, Sita B, Ahmad SK (1990) Aflatoxin elaboration and nutritional deterioration in some pulse cultivars during infestation with A. flavus. J Food Sci Technol (Mysore) 27(1):60–62Google Scholar
  314. Priyadarshini E, Tulpule P (1978) Relationship between fungal growth and aflatoxin production in varieties of maize and groundnut. J Agric Food Chem 26(1):249–252CrossRefPubMedPubMedCentralGoogle Scholar
  315. Probst C, Cotty PJ (2012) Relationships between in vivo and in vitro aflatoxin production: reliable prediction of fungal ability to contaminate maize with aflatoxins. Fungal Biol 116(4):503–510CrossRefPubMedPubMedCentralGoogle Scholar
  316. Probst C, Bandyopadhyay R, Price L, Cotty P (2011) Identification of atoxigenic Aspergillus flavus isolates to reduce aflatoxin contamination of maize in Kenya. Plant Dis 95(2):212–218CrossRefPubMedPubMedCentralGoogle Scholar
  317. Rachaputi N, Krosch S, Wright G (2002) Management practices to minimise pre-harvest aflatoxin contamination in Australian peanuts. Aust J Exp Agric 42(5):595–605CrossRefGoogle Scholar
  318. Rajasekaran K, Cary J, Jacks T, Stromberg K, Cleveland T (2000) Inhibition of fungal growth in planta and in vitro by transgenic tobacco expressing a bacterial nonheme chloroperoxidase gene. Plant Cell Rep 19(4):333–338CrossRefPubMedPubMedCentralGoogle Scholar
  319. Rajasekaran K, Cary JW, Jaynes JM, Cleveland TE (2005) Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J 3(6):545–554Google Scholar
  320. Rajasekaran K, Cary JW, Chen Z-Y, Brown RL, Cleveland TE (2008a) Antifungal traits of a 14 kDa maize kernel trypsin inhibitor protein in transgenic cotton. J Crop Improv 22(1):1–16CrossRefGoogle Scholar
  321. Rajasekaran K, Cary JW, Cotty PJ, Cleveland TE (2008b) Development of a GFP-expressing Aspergillus flavus strain to study fungal invasion, colonization, and resistance in cottonseed. Mycopathologia 165(2):89–97CrossRefPubMedPubMedCentralGoogle Scholar
  322. Rajasekaran K, Sickler C, Brown R, Cary J, Bhatnagar D (2013) Evaluation of resistance to aflatoxin contamination in kernels of maize genotypes using a GFP-expressing Aspergillus flavus strain. World Mycotoxin J 6(2):151–158CrossRefGoogle Scholar
  323. Rajasekaran K, Sayler RJ, Sickler CM, Majumdar R, Jaynes JM, Cary JW (2018) Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Plant Sci 270:150–156CrossRefPubMedPubMedCentralGoogle Scholar
  324. Ramamoorthy V, Dhingra S, Kincaid A, Shantappa S, Feng X, Calvo AM (2013) The putative C2H2 transcription factor MtfA is a novel regulator of secondary metabolism and morphogenesis in Aspergillus nidulans. PLoS One 8(9):e74122CrossRefPubMedPubMedCentralGoogle Scholar
  325. Rao KS, Tulpule P (1967) Varietal differences of groundnut in the production of aflatoxin. Nature 214(5089):738PubMedPubMedCentralGoogle Scholar
  326. Rao M, Upadhyaya H, Mehan V, Nigam S, McDonald D, Reddy N (1995) Registration of peanut germplasm ICGV 88145 and ICGV 89104 resistant to seed infection by Aspergillus flavus. Crop Sci 35(6)Google Scholar
  327. Razzaghi-Abyaneh M, Chang P-K, Shams-Ghahfarokhi M, Rai M (2014) Global health issues of aflatoxins in food and agriculture: challenges and opportunities. Front Microbiol 5:420CrossRefPubMedPubMedCentralGoogle Scholar
  328. Razzazi-Fazeli E, Rizwan M, Mayrhofer C, Nöbauer K (2011) The use of proteomics as a novel tool in aflatoxin research. In: Aflatoxins-biochemistry and molecular biology. InTech.  https://doi.org/10.5772/24911
  329. Reddy TV, Viswanathan L, Venkitasubramanian TA (1979) Factors affecting aflatoxin production by Aspergillus parasiticus in a chemically defined medium. J Gen Microbiol 114(2):409–413.  https://doi.org/10.1099/00221287-114-2-409CrossRefPubMedPubMedCentralGoogle Scholar
  330. Reib J (1982) Development of Aspergillus parasiticus and formation of aflatoxin B1 under the influence of conidiogenesis affecting compounds. Arch Microbiol 133(3):236–238CrossRefGoogle Scholar
  331. Reverberi M, Zjalic S, Punelli F, Ricelli A, Fabbri AA, Fanelli C (2007) Apyap1 affects aflatoxin biosynthesis during Aspergillus parasiticus growth in maize seeds. Food Addit Contam 24(10):1070–1075.  https://doi.org/10.1080/02652030701553244CrossRefPubMedPubMedCentralGoogle Scholar
  332. Robens J, Cardwell KF, Shephard GS, Scussel VM, Plasencia J, van Egmond HP, Jonker MA, Horn BW, McDonald T, Hammond T (2005) Aflatoxin and food safety. Taylor & Francis Group, LLC, Routledge, p 616Google Scholar
  333. Rowe CEM (2009) DNA Markers for resistance to post-harvest aflatoxin accumulation in Arachis hypogaea L. MS thesis, NC State University. http://www.lib.ncsu.edu/resolver/1840.16/1533
  334. Roy A, Chourasia H (1989) Effect of temperature on aflatoxin production in Mucuna pruriens seeds. Appl Environ Microbiol 55(2):531–532PubMedPubMedCentralGoogle Scholar
  335. Russin J, Guo B, Tubajika K, Brown R, Cleveland T, Widstrom N (1997) Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus. Phytopathology 87(5):529–533CrossRefPubMedPubMedCentralGoogle Scholar
  336. Samarajeewa U, Sen A, Cohen M, Wei C (1990) Detoxification of aflatoxins in foods and feeds by physical and chemical methods. J Food Prot 53(6):489–501CrossRefPubMedPubMedCentralGoogle Scholar
  337. Satterlee T, Cary JW, Calvo AM (2016) RmtA, a putative arginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus. PLoS One 11(5):e0155575.  https://doi.org/10.1371/journal.pone.0155575CrossRefPubMedPubMedCentralGoogle Scholar
  338. Schmidt-Heydt M, Abdel-Hadi A, Magan N, Geisen R (2009) Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. Int J Food Microbiol 135(3):231–237CrossRefPubMedPubMedCentralGoogle Scholar
  339. Schmidt-Heydt M, Rüfer CE, Abdel-Hadi A, Magan N, Geisen R (2010) The production of aflatoxin B1 or G1 by Aspergillus parasiticus at various combinations of temperature and water activity is related to the ratio of aflS to aflR expression. Mycotoxin Res 26(4):241–246.  https://doi.org/10.1007/s12550-010-0062-7CrossRefPubMedPubMedCentralGoogle Scholar
  340. Schubert M, Houdele M, Kogel KH, Fischer R, Schillberg S et al (2015) Thanatin confers partial resistance against aflatoxigenic fungi in maize (Zea mays). Transgenic Res 24(5):885–895CrossRefPubMedPubMedCentralGoogle Scholar
  341. Scott GE, Zummo N (1988) Sources of resistance in maize to kernel infection by Aspergillus flavus in the field. Crop Sci 28(3):504–507CrossRefGoogle Scholar
  342. Scott GE, Zummo N (1990a) Preharvest kernel infection by Aspergillus flavus for resistant and susceptible maize hybrids. Crop Sci 30(2):381–383CrossRefGoogle Scholar
  343. Scott GE, Zummo N (1990b) Registration of Mp313E parental line of maize. Crop Sci 30(6)Google Scholar
  344. Scott GE, Zummo N (1992) Registration of Mp420 germplasm line of maize. Crop Sci 32(5)Google Scholar
  345. Scott GE, Zummo N (1994) Kernel infection and aflatoxin production in maize by Aspergillus flavus. Plant Dis 78(2):123CrossRefGoogle Scholar
  346. Shaaban MI, Bok JW, Lauer C, Keller NP (2010) Suppressor mutagenesis identifies a velvet complex remediator of Aspergillus nidulans secondary metabolism. Eukaryot Cell 9(12):1816–1824CrossRefPubMedPubMedCentralGoogle Scholar
  347. Shan X, Williams WP (2014) Toward elucidation of genetic and functional genetic mechanisms in corn host resistance to Aspergillus flavus infection and aflatoxin contamination. Front Microbiol 5:364.  https://doi.org/10.3389/fmicb.2014.00364CrossRefPubMedPubMedCentralGoogle Scholar
  348. Sharma KK, Pothana A, Prasad K, Shah D, Kaur J, Bhatnagar D, Chen ZY, Raruang Y, Cary JW, Rajasekaran K (2017) Peanuts that keep aflatoxin at bay: a threshold that matters. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12846
  349. Shcherbakova L, Statsyuk N, Mikityuk O, Nazarova T, Dzhavakhiya V (2015) Aflatoxin B1 degradation by metabolites of Phoma glomerata PG41 isolated from natural substrate colonized by aflatoxigenic Aspergillus flavus. Jundishapur J. Microbiol 8(1):e24324.  https://doi.org/10.5812/jjm.24324CrossRefPubMedPubMedCentralGoogle Scholar
  350. Shieh M-T, Brown RL, Whitehead MP, Cary JW, Cotty PJ, Cleveland TE, Dean RA (1997) Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol 63(9):3548–3552PubMedPubMedCentralGoogle Scholar
  351. Singh A, Mehan V, Nigam S (1997) Sources of resistance to groundnut fungal and bacterial diseases: an update and appraisal. Technical report. International Crops Research Institute for the Semi-Arid Tropics, IndiaGoogle Scholar
  352. Singsit C, Adang MJ, Lynch RE, Anderson WF, Wang A, Cardineau G, Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cryIA (c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res 6(2):169–176CrossRefPubMedPubMedCentralGoogle Scholar
  353. Sirot V, Fremy J-M, Leblanc J-C (2013) Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food Chem Toxicol 52:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  354. Smith M-C, Madec S, Coton E, Hymery N (2016) Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 8(4):94CrossRefPubMedPubMedCentralGoogle Scholar
  355. Squire RA (1981) Ranking animal carcinogens: a proposed regulatory approach. Science 214(4523):877–880CrossRefPubMedPubMedCentralGoogle Scholar
  356. Stalker H, Mozingo L (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28(2):117–123CrossRefGoogle Scholar
  357. Sudhakar P, Latha P, Babitha M, Reddy P, Naidu P (2007) Relationship of drought tolerance traits with aflatoxin contamination in groundnut. Indian J Plant Physiol 12(3):261Google Scholar
  358. Sudini H, Rao GR, Gowda CLL, Chandrika R, Margam V, Rathore A, Murdock LL (2015) Purdue Improved Crop Storage (PICS) bags for safe storage of groundnuts. J Stored Prod Res 64:133e138Google Scholar
  359. Sundaresha S, Kumar AM, Rohini S, Math S, Keshamma E, Chandrashekar S, Udayakumar M (2010) Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β 1–3 glucanase. Eur J Plant Pathol 126(4):497–508CrossRefGoogle Scholar
  360. Tang JD, Perkins A, Williams WP, Warburton ML (2015) Using genomewide associations to identify metabolic pathways involved in maize aflatoxin accumulation resistance. BMC Genom 16(1):673CrossRefGoogle Scholar
  361. Thakare D, Zhang J, Wing RA, Cotty PJ, Schmidt MA (2017) Aflatoxin-free transgenic maize using host-induced gene silencing. Sci Adv 3(3):e1602382CrossRefPubMedPubMedCentralGoogle Scholar
  362. Thakur R, Rao V, Reddy S, Ferguson M (2000) Evaluation of wild Arachis germplasm accessions for in vitro seed colonization and anatoxin production by Aspergillus flavus. Int Arachis Newsl 20:44–46Google Scholar
  363. Tinoco M (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27CrossRefPubMedPubMedCentralGoogle Scholar
  364. Tomovska J, Stefanovska V, Hristova VK, Georgievski N (2012) Examination of aflatoxins B1 and G1 in feed. Maced J Anim Sci 2(4):397–404Google Scholar
  365. Torres J, Guarro J, Suarez G, Sune N, Calvo M, Ramirez C (1980) Morphological changes in strains of Aspergillus flavus link ex fries and Aspergillus parasiticus speare related with aflatoxin production. Mycopathologia 72(3):171–174CrossRefPubMedPubMedCentralGoogle Scholar
  366. Torres A, Barros G, Palacios S, Chulze S, Battilani P (2014) Review on pre-and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res Int 62:11–19CrossRefGoogle Scholar
  367. Trail F, Mahanti N, Linz J (1995) Molecular biology of aflatoxin biosynthesis. Microbiology 141(4):755–765.  https://doi.org/10.1099/13500872-141-4-755CrossRefPubMedPubMedCentralGoogle Scholar
  368. Tran-Dinh N, Pitt J, Markwell P (2018) Use of microsatellite markers to assess the competitive ability of nontoxigenic Aspergillus flavus strains in studies on biocontrol of aflatoxins in maize in Thailand. Biocontrol Sci Technol 28(3):215–225CrossRefGoogle Scholar
  369. Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15(3):109–118CrossRefPubMedPubMedCentralGoogle Scholar
  370. Udoh J, Cardwell K, Ikotun T (2000) Storage structures and aflatoxin content of maize in five agroecological zones of Nigeria. J Stored Prod Res 36(2):187–201CrossRefGoogle Scholar
  371. Upadhyaya H, Nigam S, Mehan V, Lenne J (1997) Aflatoxin contamination of groundnut: prospects for a genetic solution through conventional breeding. In: Proceedings of the first Asia working group meeting, 27–29 May 1996, Ministry of Agriculture and Rural Development Hanoi, Vietnam, pp 81–88Google Scholar
  372. Upadhyaya H, Ferguson M, Bramel P (2001) Status of the Arachis germplasm collection at ICRISAT. Peanut Sci 28(2):89–96CrossRefGoogle Scholar
  373. Upadhyaya H, Nigam S, Thakur R (2002) Genetic enhancement for resistance to aflatoxin contamination in groundnut, pp 29–36. ICRISAT Open Access RepositoryGoogle Scholar
  374. Upadhyaya HD, Sharma S, Dwivedi SL (2013) Genetic resources, diversity and association mapping in peanut. Genetics, genomics and breeding peanuts. CRC Press, Boca Raton, pp 13–36Google Scholar
  375. Utomo S, Anderson W, Wynne J, Beute M, Hagler W Jr, Payne G (1990) Estimates of heritability and correlation among three mechanisms of resistance to Aspergillus parasiticus in peanut. Proc Am Peanut Res Educ Soc 22:26Google Scholar
  376. Van Egmond HP, Schothorst RC, Jonker MA (2007) Regulations relating to mycotoxins in food. Anal Bioanal Chem 389(1):147–157.  https://doi.org/10.1007/s00216-007-1317-9CrossRefPubMedPubMedCentralGoogle Scholar
  377. Vardon P, McLaughlin C, Nardinelli C (2003) Potential economic costs of mycotoxins in the United States. Mycotoxins: risks in plant, animal, and human systems. Task force report. Council for Agricultural Science and Technology (CAST)Google Scholar
  378. Varga J, Frisvad J, Samson R (2009) A reappraisal of fungi producing aflatoxins. World Mycotoxin J 2(3):263–277CrossRefGoogle Scholar
  379. Verheecke C, Liboz T, Mathieu F (2016) Microbial degradation of aflatoxin B1: current status and future advances. Int J Food Microbiol 237:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  380. Voegele RT, Mendgen K (2003) Rust haustoria: nutrient uptake and beyond. New Phytol 159(1):93–100CrossRefGoogle Scholar
  381. Wacoo AP, Wendiro D, Vuzi PC, Hawumba JF (2014) Methods for detection of aflatoxins in agricultural food crops. J Appl Chem 2014:15.  https://doi.org/10.1155/2014/706291CrossRefGoogle Scholar
  382. Waliyar F (2006) Effect of soil application of lime, crop residue and biocontrol agents on pre-harvest Aspergillus flavus infection and aflatoxin contamination in groundnut. In: International conference on groundnut aflatoxin management and genomics, 5–9 Nov 2006, Guangdong, ChinaGoogle Scholar
  383. Waliyar F, Adomou M (2002) Summary proceedings of the seventh ICRISAT regional groundnut meeting for Western and Central Africa, 6–8 Dec 2000, International Crops Research Institute for the Semi-Arid Tropics, Cotonu, Benin, p 90Google Scholar
  384. Waliyar F, Bockelee-Morvan A (1989) Resistance of groundnut varieties to Aspergillus flavus in Senegal. In: Proceedings of international workshop on aflatoxin contamination of groundnut, 6–9 Oct 1987, ICRISAT Center, India, p 305Google Scholar
  385. Waliyar F, Hassan H, Bonkoungou S (1994) Sources of resistance to Aspergillus flavus and aflatoxin contamination in groundnut genotypes in West Africa. Plant Dis 78(7):704–708CrossRefGoogle Scholar
  386. Waliyar F, Kumar KVK, Diallo M, Traore A, Mangala U, Upadhyaya H, Sudini H (2016) Resistance to pre-harvest aflatoxin contamination in ICRISAT’s groundnut mini core collection. Eur J Plant Pathol 145(4):901–913CrossRefGoogle Scholar
  387. Walker R, White D (2001) Inheritance of resistance to Aspergillus ear rot and aflatoxin production of corn from CI2. Plant Dis 85(3):322–327CrossRefPubMedPubMedCentralGoogle Scholar
  388. Wang K, Li M, Bucan M (2007) Pathway-based approaches for analysis of genomewide association studies. Am J Human Genet 81(6):1278–1283CrossRefGoogle Scholar
  389. Wang T, Zhang E, Chen X, Li L, Liang X (2010) Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Plant Biol 10:267.  https://doi.org/10.1186/1471-2229-10-267CrossRefPubMedPubMedCentralGoogle Scholar
  390. Wang J, Ogata M, Hirai H, Kawagishi H (2011) Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett 314(2):164–169.  https://doi.org/10.1111/j.1574-6968.2010.02158.xCrossRefPubMedPubMedCentralGoogle Scholar
  391. Wang Z, Yan S, Liu C, Chen F, Wang T (2012) Proteomic analysis reveals an aflatoxin-triggered immune response in cotyledons of Arachis hypogaea infected with Aspergillus flavus. J Proteome Res 11(5):2739–2753CrossRefPubMedPubMedCentralGoogle Scholar
  392. Wang T, Chen X-P, Li H-F, Liu H-Y, Hong Y-B, Yang Q-L, Chi X-Y, Yang Z, Yu S-L, Li L (2013) Transcriptome identification of the resistance-associated genes (RAGs) to Aspergillus flavus infection in pre-harvested peanut (Arachis hypogaea). Funct Plant Biol 40(3):292–303CrossRefGoogle Scholar
  393. Wang W, Lawrence KC, Ni X, Yoon S-C, Heitschmidt GW, Feldner P (2015) Near-infrared hyperspectral imaging for detecting Aflatoxin B1 of maize kernels. Food Control 51:347–355.  https://doi.org/10.1016/j.foodcont.2014.11.047CrossRefGoogle Scholar
  394. Wang H, Lei Y, Yan L, Wan L, Ren X, Chen S, Dai X, Guo W, Jiang H, Liao B (2016a) Functional genomic analysis of Aspergillus flavus interacting with resistant and susceptible peanut. Toxins (Basel) 8(2):46.  https://doi.org/10.3390/toxins8020046CrossRefGoogle Scholar
  395. Wang M, Weiberg A, Lin F-M, Thomma BP, Huang H-D, Jin H (2016b) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 2(10):16151CrossRefPubMedPubMedCentralGoogle Scholar
  396. Warburton ML, Williams WP (2014) Aflatoxin resistance in maize: what have we learned lately? Adv Bot 2014Google Scholar
  397. Warburton ML, Brooks TD, Krakowsky MD, Shan X, Windham GL, Williams WP (2009) Identification and mapping of new sources of resistance to aflatoxin accumulation in maize. Crop Sci 49(4):1403–1408CrossRefGoogle Scholar
  398. Warburton ML, Brooks TD, Windham GL, Williams WP (2011a) Identification of novel QTL contributing resistance to aflatoxin accumulation in maize. Mol Breed 27(4):491–499CrossRefGoogle Scholar
  399. Warburton ML, Williams WP, Hawkins L, Bridges S, Gresham C, Harper J, Ozkan S, Mylroie JE, Shan X (2011b) A public platform for the verification of the phenotypic effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize. Toxins 3(7):754–765CrossRefPubMedPubMedCentralGoogle Scholar
  400. Warburton ML, Williams WP, Windham GL, Murray SC, Xu W, Hawkins LK, Duran JF (2013) Phenotypic and genetic characterization of a maize association mapping panel developed for the identification of new sources of resistance to Aspergillus flavus and aflatoxin accumulation. Crop Sci 53(6):2374–2383CrossRefGoogle Scholar
  401. Weissinger A, Liu Y, Scanlon S, Murray J, Cleveland T, Jaynes J, Mirkov E, Moonan F (1999) Transformation of peanut with the defensive peptidyl MIM D5C. In: Proceedings of the USDA-ARS aflatoxin elimination workshop, pp 66–68Google Scholar
  402. Weissinger A, Sampson K, Urban L, Ingram K, Payne G, Scanlon S, Liu Y, Cleveland T (2000) Transformation with genes enoding Peptidyl MIM®, as a means of reducing aflatoxin contamination in peanut. In: Proceedings of the 2000 USDA-ARS aflatoxin elimination workshop, pp 25–27Google Scholar
  403. Weissinger A, Wu M, Cleveland T (2003) Expression in transgenic peanut of maize RIP 1, a protein with activity against Aspergillus spp. In: Proceedings of the USDA-ARS aflatoxin elimination workshop, 2003. USDA, ARS, Oct 2003, Savannah, Georgia, Beltsville, MarylandGoogle Scholar
  404. Weissinger A, Wu M, Wang X, Isleib T, Stalker T, Shew B, Rajasekaran K, Cary J, Cleveland T (2007) Advancement and testing of transgenic peanuts with enhanced resistance to A. flavus. In: Proceedings of the 2007 annual aflatoxin/fumonisin workshop, Atlanta, GA, USA, pp 106–107Google Scholar
  405. White D, Rocheford T, Naidoo G, Paul C, Hamblin A, Forbes A (1998) Inheritance of molecular markers associated with, and breeding for resistance to Aspergillus ear rot and aflatoxin production in corn using Tex6. In: Proceedings of USDA-ARS aflatoxin elimination workshop, pp 4–6Google Scholar
  406. Widstrom N, Wilson D, McMillian W (1984) Ear resistance of maize inbreds to field aflatoxin contamination 1. Crop Sci 24(6):1155–1157CrossRefGoogle Scholar
  407. Widstrom N, Butron A, Guo B, Wilson D, Snook M, Cleveland T, Lynch R (2003) Control of preharvest aflatoxin contamination in maize by pyramiding QTL involved in resistance to ear-feeding insects and invasion by Aspergillus spp. Eur J Agron 19(4):563–572CrossRefGoogle Scholar
  408. Wilkinson JR, Yu J, Bland JM, Nierman WC, Bhatnagar D, Cleveland TE (2007) Amino acid supplementation reveals differential regulation of aflatoxin biosynthesis in Aspergillus flavus NRRL 3357 and Aspergillus parasiticus SRRC 143. Appl Microbiol Biotech 74(6):1308–1319.  https://doi.org/10.1007/s00253-006-0768-9CrossRefGoogle Scholar
  409. Will M, Holbrook C, Wilson D (1994) Evaluation of field inoculation techniques for screening peanut genotypes for reaction to preharvest A. flavus group infection and aflatoxin contamination. Peanut Sci 21(2):122–125Google Scholar
  410. Willcox MC, Davis GL, Warburton ML, Windham GL, Abbas HK, Betrán J, Holland JB, Williams WP (2013) Confirming quantitative trait loci for aflatoxin resistance from Mp313E in different genetic backgrounds. Mol Breed 32(1):15–26CrossRefGoogle Scholar
  411. Williams WP, Windham G (2001) Registration of maize germplasm line Mp715. Crop Sci 41(4):1374CrossRefGoogle Scholar
  412. Williams WP, Windham GL (2006) Registration of maize germplasm line Mp717. Crop Science 46(3):1407CrossRefGoogle Scholar
  413. Williams WP, Windham GL (2012) Registration of Mp718 and Mp719 germplasm lines of maize. J Plant Reg 6(2):200CrossRefGoogle Scholar
  414. Williams WP, Davis F, Windham G, Buckley P (2002) Southwestern corn borer damage and aflatoxin accumulation in a diallel cross of maize. J Genet Breed 56(2):165–170Google Scholar
  415. Williams WP, Krakowsky MD, Scully BT, Brown RL, Menkir A, Warburton ML, Windham GL (2014) Identifying and developing maize germplasm with resistance to accumulation of aflatoxins. World Mycotoxin J 8(2):193–209CrossRefGoogle Scholar
  416. Williams WP, Windhan G, Buckley P (2003) Aflatoxin accumulation in maize after inoculation with Aspergillus flavus and infestation with South Western corn borer [Zea mays L.; Mississippi]. J Genet Breed 57:365–370Google Scholar
  417. Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D (2004) Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr 80(5):1106–1122CrossRefPubMedPubMedCentralGoogle Scholar
  418. Williams J, Aggarwal D, Jolly P, Phillips T, Wang J (2005) Connecting the dots: logical and statistical connections between aflatoxin exposure and HIV/AIDS. In: Peanut collaborative research support programGoogle Scholar
  419. Williams WP, Windham GL, Krakowsky MD, Scully BT, Ni X (2010) Aflatoxin accumulation in BT and non-BT maize testcrosses. J Crop Improv 24(4):392–399CrossRefGoogle Scholar
  420. Williams SB, Baributsa D, Woloshuk C (2014) Assessing Purdue Improved Crop Storage (PICS) bags to mitigate fungal growth and aflatoxin contamination. J Stored Prod Res 59:190–196CrossRefGoogle Scholar
  421. Williams WP, Windham GL, Matthews GA, Buckley PM (2018) Diallel analysis for aflatoxin accumulation and fall armyworm leaf-feeding damage in maize. J Crop Improv 32(2):254–263CrossRefGoogle Scholar
  422. Wilson D, Branch W, Beaver R, Maw B (1990) Screening peanut genotypes for resistance to aflatoxin accumulation. In: Proceeding of the American Peanut Research and Education SocietyGoogle Scholar
  423. Windham GL, Williams WP, Buckley PM, Abbas HK (2003) Inoculation techniques used to quantify aflatoxin resistance in corn. J Toxicol Toxin Rev 22(2–3):313–325CrossRefGoogle Scholar
  424. Wogan GN (2000) Impacts of chemicals on liver cancer risk. In: Seminars in cancer biology, vol 3. Elsevier, Amsterdam, pp 201–210Google Scholar
  425. Woloshuk CP, Cavaletto JR, Cleveland TE (1997) Inducers of aflatoxin biosynthesis from colonized maize kernels are generated by an amylase activity from Aspergillus flavus. Phytopathology 87(2):164–169.  https://doi.org/10.1094/phyto.1997.87.2.164CrossRefPubMedPubMedCentralGoogle Scholar
  426. Wotton H, Strange R (1987) Increased susceptibility and reduced phytoalexin accumulation in drought-stressed peanut kernels challenged with Aspergillus flavus. Appl Environ Microbiol 53(2):270–273PubMedPubMedCentralGoogle Scholar
  427. Wu F (2004) Mycotoxin risk assessment for the purpose of setting international regulatory standards. ACS PublicationsGoogle Scholar
  428. Xiao D, Wang S, Zhang H (1999) Progress of research on resistance to aflatoxin contamination in groundnut. Peanut Sci Technol 7:124–129Google Scholar
  429. Xie C, Wen S, Liu H, Chen X, Li H, Hong Y, Liang X (2013) Overexpression of ARAhPR10, a member of the PR10 family, decreases levels of Aspergillus flavus infection in peanut seeds. Am J Plant Sci 4(03):6.  https://doi.org/10.4236/ajps.2013.43079CrossRefGoogle Scholar
  430. Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142(2):429–440CrossRefPubMedPubMedCentralGoogle Scholar
  431. Xue H, Isleib T, Payne G, OBrian G (2004a) Evaluation of post-harvest aflatoxin production in peanut germplasm with resistance to seed colonization and pre-harvest aflatoxin contamination. Peanut Sci 31(2):124–134Google Scholar
  432. Xue H, Isleib T, Stalker H, Payne G, OBrian G (2004b) Evaluation of Arachis species and interspecific tetraploid lines for resistance to aflatoxin production by Aspergillus flavus. Peanut Sci 31(2):134–141Google Scholar
  433. Yabe K, Nakajima H (2004) Enzyme reactions and genes in aflatoxin biosynthesis. Appl Microbiol Biotechnol 64(6):745–755CrossRefPubMedPubMedCentralGoogle Scholar
  434. Yang K, Liang L, Ran F, Liu Y, Li Z, Lan H, Gao P, Zhuang Z, Zhang F, Nie X (2016a) The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence. Sci Rep 6:23259CrossRefPubMedPubMedCentralGoogle Scholar
  435. Yang K, Qin Q, Liu Y, Zhang L, Liang L, Lan H, Chen C, You Y, Zhang F, Wang S (2016b) Adenylate cyclase AcyA regulates development, aflatoxin biosynthesis and fungal virulence in Aspergillus flavus. Front Cell Infect Microbiol 6:190.  https://doi.org/10.3389/fcimb.2016.00190CrossRefPubMedPubMedCentralGoogle Scholar
  436. Yang K, Liu Y, Liang L, Li Z, Qin Q, Nie X, Wang S (2017) The high-affinity phosphodiesterase PdeH regulates development and aflatoxin biosynthesis in Aspergillus flavus. Fungal Genet Biol 101:7–19.  https://doi.org/10.1016/j.fgb.2017.02.004CrossRefPubMedPubMedCentralGoogle Scholar
  437. Yao H, Hruska Z, Di Mavungu JD (2015) Developments in detection and determination of aflatoxins. World Mycotoxin J 8(2):181–191CrossRefGoogle Scholar
  438. Yin Y, Yan L, Jiang J, Ma Z (2008) Biological control of aflatoxin contamination of crops. J Zhejiang Univ Sci B 9(10):787–792CrossRefPubMedPubMedCentralGoogle Scholar
  439. Yin C, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant-Microbe Interact 24(5):554–561Google Scholar
  440. Yin Z, Wang Y, Wu F, Gu X, Bian Y, Wang Y, Deng D (2014) Quantitative trait locus mapping of resistance to Aspergillus flavus infection using a recombinant inbred line population in maize. Mol Breed 33(1):39–49CrossRefGoogle Scholar
  441. Yu J (2012) Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins 4(11):1024CrossRefPubMedPubMedCentralGoogle Scholar
  442. Yu J, Chang P-K, Bhatnagar D, Cleveland TE (2000) Cloning of a sugar utilization gene cluster in Aspergillus parasiticus. Biochim Biophys Acta (BBA) Gene Struct Expr 1493(1–2):211–214.  https://doi.org/10.1016/s0167-4781(00)00148-2
  443. Yu J, Chang P-K, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70(3):1253–1262CrossRefPubMedPubMedCentralGoogle Scholar
  444. Yu J, Fedorova ND, Montalbano BG, Bhatnagar D, Cleveland TE, Bennett JW, Nierman WC (2011) Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol Lett 322(2):145–149.  https://doi.org/10.1111/j.1574-6968.2011.02345.xCrossRefPubMedPubMedCentralGoogle Scholar
  445. Yugandhar G (2005) Evaluation of mini core set of germplasm in groundnut (Arachis hypogaea L.). M.Sc. (Agri) thesisGoogle Scholar
  446. Zambettakis C (1975) Study of the contamination of several varieties of groundnut by Aspergillus flavus. Oleagineux (France)Google Scholar
  447. Zambettakis C, Waliyar F, Bockelee-Morvan A, De Pins O (1981) Results of four years of research on resistance of groundnut varieties to Aspergillus flavus. Oleagineux 36(7):377–385Google Scholar
  448. Zanon MSA, Chiotta M, Giaj-Merlera G, Barros G, Chulze S (2013) Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts. Int J Food Microbiol 162(3):220–225CrossRefGoogle Scholar
  449. Zanon MSA, Barros GG, Chulze SN (2016) Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina. Int J Food Microbiol 231:63–68CrossRefGoogle Scholar
  450. Zhang T, Yuan Y, Yu J, Guo W, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet 106(2):262–268CrossRefPubMedPubMedCentralGoogle Scholar
  451. Zhang F, Guo Z, Zhong H, Wang S, Yang W, Liu Y, Wang S (2014) RNA-Seq-based transcriptome analysis of aflatoxigenic Aspergillus flavus in response to water activity. Toxins 6(11):3187–3207CrossRefPubMedPubMedCentralGoogle Scholar
  452. Zhang Y, Cui M, Zhang J, Zhang L, Li C, Kan X, Sun Q, Deng D, Yin Z (2016) Confirmation and fine mapping of a major QTL for aflatoxin resistance in maize using a combination of linkage and association mapping. Toxins 8(9):258CrossRefGoogle Scholar
  453. Zhao X, Li C, Wan S, Zhang T, Yan C, Shan S (2018) Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Mol Biol Rep 45(2):119–131CrossRefPubMedPubMedCentralGoogle Scholar
  454. Zhou G, Liang X, Li Y, Li X, Li S (2002) Evaluation and application of introduced peanut cultivars for resistance to Aspergillus flavus invasion. J Peanut Sci 34:14–17Google Scholar
  455. Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio 6(1):e02288–e02214CrossRefPubMedPubMedCentralGoogle Scholar
  456. Zuber M, Calvert O, Kwolek W, Lillehoj E, Kang M (1978) Aflatoxin B1 production in an eight-line diallel of Zea mays infected with Aspergillus flavus. Phytopathology 68:1346–1349CrossRefGoogle Scholar
  457. Zummo N, Scott GE (1989) Evaluation of field inoculation techniques for screening maize genotypes against kernel infection by Aspergillus flavus in Mississippi. Plant Dis 73:313–316CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kalyani Prasad
    • 1
  • Kiran Kumar Sharma
    • 1
  • Pooja Bhatnagar-Mathur
    • 1
    Email author
  1. 1.Cell, Molecular Biology and Genetic Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, HyderabadIndia

Personalised recommendations