Advertisement

Moving into the Third Decade of Nanoscale Zero-Valent Iron (NZVI) Development: Best Practices for Field Implementation

  • Chris M. KocurEmail author
  • Brent E. Sleep
  • Denis M. O’Carroll
Chapter

Abstract

This chapter provides an overview of environmental restoration efforts involving the application of NZVI. The chapter focuses on the novel application techniques aimed at improving the delivery, characterization, and effectiveness of NZVI, drawing on over two decades of peer-reviewed literature. Stressing a base of knowledge through detailed site characterization toward a site conceptual model, this chapter discusses delivery techniques, options for NZVI formulation, and challenges associated with different site conditions. NZVI particle types and injection characteristics are covered along with field-ready analytical capabilities for NZVI detection and characterization. The chapter also highlights cases where remote sensing and modeling have been used to better understand NZVI delivery. Lessons learned from past field studies are discussed and will become increasingly relevant as the industry gears up for a renaissance of NZVI use. Growing confidence in the use cases for stabilized NZVI, the synergistic application of ZVI + bioremediation and technological advances such as sulfidation will catch the eye of practitioners and site managers into the future and lead to more innovation.

Keywords

Nanoscale zerovalent iron Field implementation Best practice Combined remedies with NZVI 

References

  1. Abriola, L. R. A., & Pennell, K. (2011). Final report: Development and optimization of targeted nanoscale Iron delivery methods for treatment of NAPL source zones. Strategic Environmental Research and Development Program. Tufts University.Google Scholar
  2. Acar, Y. B., & Alshawabkeh, A. N. (1993). Principles of electrokinetic remediation. Environmental Science & Technology, 27, 2638–2647.CrossRefGoogle Scholar
  3. Adeleye, A., Keller, A., Miller, R., & Lenihan, H. (2013). Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. Journal of Nanoparticle Research, 15, 1–18.CrossRefGoogle Scholar
  4. Annable, M. D., Jawitz, J. W., Rao, P. S. C., Dai, D. P., Kim, H., & Wood, A. L. (1998). Field evaluation of interfacial and partitioning tracers for characterization of effective NAPL-water contact areas. Ground Water, 36, 495–502.CrossRefGoogle Scholar
  5. Arnason, J. G., Harkness, M., & Butler-Veytia, B. (2014). Evaluating the subsurface distribution of zero-valent Iron using magnetic susceptibility. Groundwater Monitoring & Remediation, 34, 96–106.CrossRefGoogle Scholar
  6. Arnold, W. A., & Roberts, A. L. (2000). Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environmental Science & Technology, 34, 1794–1805.CrossRefGoogle Scholar
  7. Baalousha, M. (2009). Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Science of the Total Environment, 407, 2093–2101.CrossRefGoogle Scholar
  8. Bai, R., & Tien, C. (1996). A new correlation for the initial filter coefficient under unfavorable surface interactions. Journal of Colloid and Interface Science, 179, 631–634.CrossRefGoogle Scholar
  9. Bai, R., & Tien, C. (1999). Particle deposition under unfavorable surface interactions. Journal of Colloid and Interface Science, 218, 488–499.CrossRefGoogle Scholar
  10. Barnes, R. J., Riba, O., Gardner, M. N., Singer, A. C., Jackman, S. A., & Thompson, I. P. (2010). Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere, 80(5), 554–562.CrossRefGoogle Scholar
  11. Bennett, P., He, F., Zhao, D., Aiken, B., & Feldman, L. (2010). In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 116, 35.CrossRefGoogle Scholar
  12. Benson, R. C. (2005). Practical handbook of environmental site characterization and ground-water monitoring (2nd ed.pp. 249–295). CRC Press: Boca Raton, FL.Google Scholar
  13. Berge, N. D., & Ramsburg, C. A. (2009). Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environmental Science & Technology, 43, 5060–5066.CrossRefGoogle Scholar
  14. Buchau, A., Rucker, W. M., De Boer, C. V., & Klaas, N. (2010). Inductive detection and concentration measurement of nano sized zero valent iron in the subsurface. IET Science, Measurement and Technology, 4, 289–297.CrossRefGoogle Scholar
  15. Butler, J. J. (1997). The design, performance, and analysis of slug tests. Boca Raton: Taylor & Francis.CrossRefGoogle Scholar
  16. Cantrell, K. J., Kaplan, D. I., & Gilmore, T. J. (1997a). Injection of colloidal Fe-0 particles in sand with shear-thinning fluids. Journal of Environmental Engineering-ASCE, 123, 786–791.CrossRefGoogle Scholar
  17. Cantrell, K. J., Kaplan, D. I., & Gilmore, T. J. (1997b). Injection of colloidal size particles of Fe0 in porous media with shear thinning fluids as a method to emplace a permeable reactive zone. Land Contamination and Reclamation, 5, 253–257.Google Scholar
  18. Cantrell, K. J., Kaplan, D. I., & Wietsma, T. W. (1995). Zero-valent iron for the in situ remediation of selected metals in groundwater. Journal of Hazardous Materials, 42, 201–212.CrossRefGoogle Scholar
  19. Chang, M. C., & Kang, H. Y. (2009). Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. Journal of Environmental Science and Health, Part A, 44, 576–582.CrossRefGoogle Scholar
  20. Chatterjee, J., & Gupta, S. K. (2009). An agglomeration-based model for colloid filtration. Environmental Science & Technology, 43, 3694.CrossRefGoogle Scholar
  21. Chowdhury, A. I. A., Krol, M. M., Kocur, C. M., Boparai, H. K., Weber, K. P., Sleep, B. E., & O'Carroll, D. M. (2015). nZVI injection into variably saturated soils: Field and modeling study. Journal of Contaminant Hydrology, 183, 16–28.CrossRefGoogle Scholar
  22. Chowdhury, A. I. A., O'Carroll, D. M., Xu, Y., & Sleep, B. E. (2012). Electrophoresis enhanced transport of nano-scale zero valent iron. Advances in Water Resources, 40, 71–82.CrossRefGoogle Scholar
  23. Comba, S., Dalmazzo, D., Santagata, E., & Sethi, R. (2012). Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. Journal of Hazardous Materials, 185, 598–605.CrossRefGoogle Scholar
  24. Comba, S., & Sethi, R. (2009). Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Research, 43, 3717–3726.CrossRefGoogle Scholar
  25. Cullen, L. G., Tilston, E. L., Mitchell, G. R., Collins, C. D., & Shaw, L. J. (2011). Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: Particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere, 82, 1675–1682.CrossRefGoogle Scholar
  26. Dukhin, A. S., Goetz, P. J., & Truesdail, S. (2001). Titration of concentrated dispersions using electroacoustic ζ-potential probe. Langmuir, 17, 964–968.CrossRefGoogle Scholar
  27. Einarson, M. (2005). Multilevel ground-water monitoring. Practical handbook of environmental site characterization and ground-water monitoring (2nd ed.pp. 807–848). CRC Press: Boca Raton, FL.CrossRefGoogle Scholar
  28. Elliott, D. W., & Zhang, W.-X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35, 4922–4926.CrossRefGoogle Scholar
  29. Fagerlund, F., Illangasekare, T. H., Phenrat, T., Kim, H. J., & Lowry, G. V. (2012). PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Journal of Contaminant Hydrology, 131, 9–28.CrossRefGoogle Scholar
  30. Fernandez-Sanchez, J. M., Sawvel, E. J., & Alvarez, P. J. J. (2004). Effect of Fe0 quantity on the efficiency of integrated microbial-Fe0 treatment processes. Chemosphere, 54, 823–829.CrossRefGoogle Scholar
  31. Fetter, C. W. (2001). Applied hydrogeology (4th ed.). Inc, Upper Saddle River: Prentice-Hall.Google Scholar
  32. Gavaskar, A., Tatar, L., & Condit, W. (2005). Contract report: Cost and performance report: Nanoscale zerovalent iron technologies for source remediation. Port Huenema: NAVFAC: Naval Facilities Engineering Command.CrossRefGoogle Scholar
  33. Gillham, R., Vogan, J., Gui, L., Duchene, M., & Son, J. (2010). Iron barrier walls for chlorinated solvent remediantion. In H. F. Stroo & C. H. Ward (Eds.), In situ remediation of chlorinated solvent plumes (pp. 537–571). New York: Springer Science Media.CrossRefGoogle Scholar
  34. Haselow, J. S., Siegrist, R. L., Crimi, M., & Jarosch, T. (2003). Estimating the total oxidant demand for in situ chemical oxidation design. Remediation Journal, 13, 5–16.CrossRefGoogle Scholar
  35. He, F., Zhang, M., Qian, T., & Zhao, D. (2009). Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. Journal of Colloid and Interface Science, 334, 96–102.CrossRefGoogle Scholar
  36. He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemical Research, 46, 29–34.CrossRefGoogle Scholar
  37. He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44, 2360–2370.CrossRefGoogle Scholar
  38. Henn, K. W., & Waddill, D. W. (2006). Utilization of nanoscale zero-valent iron for source remediation - a case study. Remediation Journal, 16, 57–77.CrossRefGoogle Scholar
  39. ITRC. (2011). Integrated DNAPL site strategy. Washington, DC: Interstate Technology & Regulatory Council, Integrated DNAPL Site Strategy Team.Google Scholar
  40. Jeon, J.-R., Murugesan, K., Nam, I.-H., & Chang, Y.-S. (2013). Coupling microbial catabolic actions with abiotic redox processes: A new recipe for persistent organic pollutant (POP) removal. Biotechnology Advances, 31, 246–256.CrossRefGoogle Scholar
  41. Jiang, C., Liu, Y., Chen, Z., Megharaj, M., & Naidu, R. (2013). Impact of iron-based nanoparticles on microbial denitrification by Paracoccus sp. strain YF1. Aquatic Toxicology, 142–143, 329–335.CrossRefGoogle Scholar
  42. Johnson, R. L., Johnson, G. O. B., Nurmi, J. T., & Tratnyek, P. G. (2009). Natural organic matter enhanced mobility of nano zerovalent iron. Environmental Science & Technology, 43, 5455–5460.CrossRefGoogle Scholar
  43. Johnson, R. L., Nurmi, J. T., O'Brien Johnson, G. S., Fan, D., O'Brien Johnson, R. L., Shi, Z., Salter-Blanc, A. J., Tratnyek, P. G., & Lowry, G. V. (2013). Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environmental Science & Technology, 47, 1573–1580.CrossRefGoogle Scholar
  44. Jones, B. D., & Ingle, J. D., Jr. (2001). Evaluation of immobilized redox indicators as reversible, in situ redox sensors for determining Fe(III)-reducing conditions in environmental samples. Talanta, 55, 699–714.CrossRefGoogle Scholar
  45. Jones, B. D., & Ingle, J. D., Jr. (2005). Evaluation of redox indicators for determining sulfate-reducing and dechlorinating conditions. Water Research, 39, 4343–4354.CrossRefGoogle Scholar
  46. Joyce, R. A., Glaser, D. R., Werkema, D. D., & Atekwana, E. A. (2012). Spectral induced polarization response to nanoparticles in a saturated sand matrix. Journal of Applied Geophysics, 77, 63–71.CrossRefGoogle Scholar
  47. Kanel, S. R., Goswami, R. R., Clement, T. P., Barnett, M. O., & Zhao, D. (2008). Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environmental Science & Technology, 42, 896–900.CrossRefGoogle Scholar
  48. Kaplan, D. I., Cantrell, K. J., Wietsma, T. W., & Potter, M. A. (1996). Retention of zero-valent iron colloids by sand columns: Application to chemical barrier formation. Journal of Environmental Quality, 25, 1086–1094.CrossRefGoogle Scholar
  49. Keenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zero-valent Iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmental Science & Technology, 43, 4555–4560.CrossRefGoogle Scholar
  50. Kirschling, T., Gregory, K., Minkley, N., Lowry, G., & Tilton, R. (2010). Impact of nanoscale zerovalent iron on geochemistry and microbial populations. Environmental Science & Technology, 44, 3474–3480.Google Scholar
  51. Köber, R., Hollert, H., Hornbruch, G., Jekel, M., Kamptner, A., Klaas, N., Maes, H., Mangold, K. M., Martac, E., Matheis, A., Paar, H., Schäffer, A., Schell, H., Schiwy, A., Schmidt, K. R., Strutz, T. J., Thümmler, S., Tiehm, A., & Braun, J. (2014). Nanoscale zero-valent iron flakes for groundwater treatment. Environment and Earth Science, 72, 3339–3352.CrossRefGoogle Scholar
  52. Kocur, C. M., Chowdhury, A. I., Sakulchaicharoen, N., Boparai, H. K., Weber, K. P., Sharma, P., Krol, M. M., Austrins, L., Peace, C., Sleep, B. E., & O’Carroll, D. M. (2014). Characterization of nZVI mobility in a field scale test. Environmental Science & Technology, 48, 2862–2869.CrossRefGoogle Scholar
  53. Kocur, C. M., O'Carroll, D. M., & Sleep, B. E. (2013). Impact of nZVI stability on mobility in porous media. Journal of Contaminant Hydrology, 145, 17–25.CrossRefGoogle Scholar
  54. Kram, M. L. (2005). Dnapl characterization methods and approaches. Practical handbook of environmental site characterization and ground-water monitoring (2nd ed.pp. 473–515). CRC Press: Boca Raton, FL.CrossRefGoogle Scholar
  55. Krol, M. M., Oleniuk, A. J., Kocur, C. M., Sleep, B. E., Bennett, P., Zhong, X., & O'Carroll, D. M. (2013). A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environmental Science & Technology, 47, 7332–7340.CrossRefGoogle Scholar
  56. Krug, T., O'Hara, S., Watling, M., & Quinn, J. (2010). Final report: Emulsified zero-valent nano-scale iron treatment of chlorinated solvent DNAPL source areas ESTCP (763 pp.). Washington DC.Google Scholar
  57. Kueper, B. H., Stroo, H. F., Vogel, C. M., Ward, C. H. (2014). Chlorinated solvent source zone remediation. Springer, New York, 713 pp.Google Scholar
  58. Lampron, K. J., Chiu, P. C., & Cha, D. K. (1998). Biological reduction of trichloroethene supported by Fe(0). Bioremediation Journal, 2, 175–181.CrossRefGoogle Scholar
  59. Lampron, K. J., Chiu, P. C., & Cha, D. K. (2001). Reductive dehalogenation of chlorinated ethenes with elemental iron: The role of microorganisms. Water Research, 35, 3077–3084.CrossRefGoogle Scholar
  60. Laumann, S., Micić, V., Lowry, G. V., & Hofmann, T. (2013). Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environmental Pollution, 179, 53–60.CrossRefGoogle Scholar
  61. Lee, M., Wells, E., Wong, Y. K., Koenig, J., Adrian, L., Richnow, H. H., & Manefield, M. (2015). Relative contributions of dehalobacter and zerovalent iron in the degradation of chlorinated methanes. Environmental Science & Technology, 49, 4481–4489.CrossRefGoogle Scholar
  62. Lee, S., Bi, X., Reed, R. B., Ranville, J. F., Herckes, P., & Westerhoff, P. (2014). Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environmental Science & Technology, 48, 10291–10300.CrossRefGoogle Scholar
  63. Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., & Jiang, G. (2009). Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and Environmental Safety, 72, 684–692.CrossRefGoogle Scholar
  64. Li, X.-Q., & Zhang, W.-X. (2007). Sequestration of metal cations with zerovalent iron nanoparticles - A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 111, 6939–6946.CrossRefGoogle Scholar
  65. Li, Z. Q., Greden, K., Alvarez, P. J. J., Gregory, K. B., & Lowry, G. V. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environmental Science & Technology, 44, 3462–3467.CrossRefGoogle Scholar
  66. Liu, Y., & Lowry, G. V. (2006). Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science & Technology, 40, 6085–6090.CrossRefGoogle Scholar
  67. Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE Dechlorination rates, pathways, and efficiency of nanoscale Iron particles with different properties. Environmental Science & Technology, 39, 1338–1345.CrossRefGoogle Scholar
  68. Lowry, G. V., Hill, R. J., Harper, S., Rawle, A. F., Hendren, C. O., Klaessig, F., Nobbmann, U., Syare, P., & Rumble, J. (2016). Guidance for measuring, interpreting, and reporting zeta potential measurements for environmental nanotechnology and nanotoxicology. Environmental Science. Nano, 3, 953–965.CrossRefGoogle Scholar
  69. Luna, M., Gastone, F., Tosco, T., Sethi, R., Velimirovic, M., Gemoets, J., Muyshondt, R., Sapion, H., Klaas, N., & Bastiaens, L. (2015). Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation. Journal of Contaminant Hydrology, 181, 46.CrossRefGoogle Scholar
  70. Mace, C. (2006). Controlling groundwater VOCs: Do nanoscale ZVI particles have any advantages over microscale ZVI of BNP. Pollution Engineering, 38, 24–28.Google Scholar
  71. Mao, X., Wang, J., Ciblak, A., Cox, E. E., Riis, C., Terkelsen, M., Gent, D. B., & Alshawabkeh, A. N. (2012). Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay. Journal of Hazardous Materials, 213–214, 311–317.CrossRefGoogle Scholar
  72. Martel, K. E., Martel, R., Lefebvre, R., & Gélinas, P. J. (1998). Laboratory study of polymer solutions used for mobility control during in situ NAPL recovery. Ground Water Monitoring & Remediation, 18, 103–113.CrossRefGoogle Scholar
  73. Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 28, 2045–2053.CrossRefGoogle Scholar
  74. Mueller, N. C., Braun, J., Bruns, J., Cernik, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19, 550–558.CrossRefGoogle Scholar
  75. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60, 193–207.CrossRefGoogle Scholar
  76. Murdoch, L., & Slack, W. (2002). Forms of hydraulic fractures in shallow fine-grained formations. Journal of Geotechnical and Geoenvironmental Engineering, 128, 479–487.CrossRefGoogle Scholar
  77. Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., Wang, C., Linehan, J. C., Matson, D. W., Penn, R. L., & Driessen, M. D. (2005). Characterization and properties of metallic Iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 39, 1221–1230.CrossRefGoogle Scholar
  78. O'Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.CrossRefGoogle Scholar
  79. O'Hara, S., Krug, T., Quinn, J., Clausen, C., & Geiger, C. (2006). Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediation Journal, 16, 35–56.CrossRefGoogle Scholar
  80. Oostrom, M., Wietsma, T. W., Covert, M. A., & Vermeul, V. R. (2007). Zero-valent iron emplacement in permeable porous media using polymer additions. Ground Water Monitoring and Remediation, 27, 122–130.CrossRefGoogle Scholar
  81. Pawlett, M., Ritz, K., Dorey, R. A., Rocks, S., Ramsden, J., & Harris, J. A. (2013). The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research International, 20, 1041–1049.CrossRefGoogle Scholar
  82. Pennell, K. D., Jin, M., Abriola, L. M., & Pope, G. A. (1994). Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene. Journal of Contaminant Hydrology, 16, 35–53.CrossRefGoogle Scholar
  83. Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M., & Tufenkji, N. (2010). Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environmental Science & Technology, 44, 6532–6549.CrossRefGoogle Scholar
  84. Phenrat, T., Cihan, A., Kim, H.-J., Mital, M., Illangasekare, T., & Lowry, G. V. (2010a). Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: Effects of particle concentration, Fe0 content, and coatings. Environmental Science & Technology, 44, 9086–9093.CrossRefGoogle Scholar
  85. Phenrat, T., Fagerlund, F., Illangasekare, T., Lowry, G. V., & Tilton, R. D. (2011). Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45, 6102–6109.CrossRefGoogle Scholar
  86. Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009a). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085.CrossRefGoogle Scholar
  87. Phenrat, T., Kim, H. J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010b). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe-0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118, 152–164.CrossRefGoogle Scholar
  88. Phenrat, T., Long, T. C., Lowry, G. V., & Veronesi, B. (2009b). Partial oxidation ("Aging") and surface modification decrease the toxicity of nanosized zerovalent iron. Environmental Science & Technology, 43, 195–200.CrossRefGoogle Scholar
  89. Phenrat, T., Saleh, N., Sirk, K., Kim, H.-J., Tilton, R., & Lowry, G. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 10, 795–814.CrossRefGoogle Scholar
  90. Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284–290.CrossRefGoogle Scholar
  91. Pinder, G. F., & Celia, M. A. (2006). Subsurface hydrology. Hoboken: Wiley.CrossRefGoogle Scholar
  92. Preslo, L. M., Nielsen, G. L., & Nielsen, D. M. (2005). Environmental site characterization. Practical handbook of environmental site characterization and ground-water monitoring (2nd ed.pp. 35–205). CRC Press: Boca Raton, FL.CrossRefGoogle Scholar
  93. Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O'Hara, S., Krug, T., Major, D., Yoon, W.-S., Gavaskar, A., & Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 39, 1309–1318.CrossRefGoogle Scholar
  94. Raychoudhury, T., Naja, G., & Ghoshal, S. (2010). Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. Journal of Contaminant Hydrology, 118, 143–151.CrossRefGoogle Scholar
  95. Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2012). Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Research, 46, 1735–1744.CrossRefGoogle Scholar
  96. Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2014). Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Research, 50, 80–89.CrossRefGoogle Scholar
  97. Reinsch, B. C., Forsberg, B., Penn, R. L., Kim, C. S., & Lowry, G. V. (2010). Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environmental Science & Technology, 44, 3455–3461.CrossRefGoogle Scholar
  98. Rosenthal, H., Adrian, L., & Steiof, M. (2004). Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing two Dehalococcoides strains. Chemosphere, 55, 661–669.CrossRefGoogle Scholar
  99. Saccà, M. L., Fajardo, C., Costa, G., Lobo, C., Nande, M., & Martin, M. (2014). Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere, 104, 184–189.CrossRefGoogle Scholar
  100. Sakulchaicharoen, N., O'Carroll, D. M., & Herrera, J. E. (2010). Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. Journal of Contaminant Hydrology, 118, 117–127.CrossRefGoogle Scholar
  101. Saleh, N., Kim, H.-J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349–3355.CrossRefGoogle Scholar
  102. Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5, 2489–2494.CrossRefGoogle Scholar
  103. Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24, 45–57.CrossRefGoogle Scholar
  104. Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16, 2187–2193.CrossRefGoogle Scholar
  105. Shi, Z., Fan, D., Johnson, R. L., Tratnyek, P. G., Nurmi, J. T., Wu, Y., & Williams, K. H. (2015). Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. Journal of Contaminant Hydrology, 181, 17–35.CrossRefGoogle Scholar
  106. Shi, Z., Nurmi, J. T., & Tratnyek, P. G. (2011). Effects of nano zero-valent iron on oxidation reduction potential. Environmental Science & Technology, 45, 1586–1592.CrossRefGoogle Scholar
  107. Slater, L., & Binley, A. (2003). Evaluation of permeable reactive barrier (PRB) integrity using electrical imaging methods. Geophysics, 68, 911–921.CrossRefGoogle Scholar
  108. Slater, L. D., Choi, J., & Wu, Y. (2005). Electrical properties of iron-sand columns: Implications for induced polarization investigation and performance monitoring of iron-wall barriers. Geophysics, 70, G87–G94.CrossRefGoogle Scholar
  109. Stookey, L. L. (1970). Ferrozine - a new spectrophotometric reagent for iron. Analytical Chemistry, 42, 779.CrossRefGoogle Scholar
  110. Su, C., Puls, R. W., Krug, T. A., Watling, M. T., O'Hara, S. K., Quinn, J. W., & Ruiz, N. E. (2012). A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Research, 46, 5071–5084.CrossRefGoogle Scholar
  111. Su, Y., Adeleye, A. S., Zhou, X., Dai, C., Zhang, W., Keller, A. A., & Zhang, Y. (2014). Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron. Journal of Hazardous Materials, 280, 504–513.CrossRefGoogle Scholar
  112. Sun, J., Wang, S., Zhao, D., Hun, F. H., Weng, L., & Liu, H. (2011). Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Cell Biology and Toxicology, 27, 333–342.CrossRefGoogle Scholar
  113. Sun, Q., Feitz, A. J., Guan, J., & Waite, T. D. (2008). Comparison of the reactivity of nanosized zero-valent iron (nZVI) particles produced by borohydride and dithionite reduction of iron salts. Nano, 3, 341–349.CrossRefGoogle Scholar
  114. Sun, Y.-P., Li, X.-Q., Cao, J., Zhang, W.-X., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120, 47–56.CrossRefGoogle Scholar
  115. Sun, Y.-P., Li, X.-Q., Zhang, W.-X., & Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308, 60–66.CrossRefGoogle Scholar
  116. Szecsody, J. E., Fruchter, J. S., Williams, M. D., Vermeul, V. R., & Sklarew, D. (2004). In situ chemical reduction of aquifer sediments: Enhancement of reactive iron phases and TCE dechlorination. Environmental Science and Technology, 38, 4656–4663.CrossRefGoogle Scholar
  117. Taghavy, A., Costanza, J., Pennell, K. D., & Abriola, L. M. (2010). Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone. Journal of Contaminant Hydrology, 118, 128–142.CrossRefGoogle Scholar
  118. Tilston, E. L., Collins, C. D., Mitchell, G. R., Princivalle, J., & Shaw, L. J. (2013). Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environmental Pollution, 173, 38–46.CrossRefGoogle Scholar
  119. Tiraferri, A., Chen, K. L., Sethi, R., & Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324, 71–79.CrossRefGoogle Scholar
  120. Tiraferri, A., & Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. Journal of Nanoparticle Research, 11, 635–645.CrossRefGoogle Scholar
  121. Tosco, T., & Sethi, R. (2010). Transport of non-Newtonian suspensions of highly concentrated micro- and nanoscale Iron particles in porous media: A modeling approach. Environmental Science & Technology, 44, 9062–9068.CrossRefGoogle Scholar
  122. Tratnyek, P. G., Johnson, R. L., Lowry, G. V., & Brown, R. A. (2014). In situ chemical reduction for source remediation. Springer.Google Scholar
  123. Tratnyek, P. G., Reilkoff, T., Lemon, A., Scherer, M., Balko, B., Feik, L., & Henegar, B. (2001). Visualizing redox chemistry: Probing environmental oxidation–reduction reactions with indicator dyes. The Chemical Educator, 6, 172–179.CrossRefGoogle Scholar
  124. Truex, M. J., Macbeth, T. W., Vermeul, V. R., Fritz, B. G., Mendoza, D. P., Mackley, R. D., Wietsma, T. W., Sandberg, G., Powell, T., Powers, J., Pitre, E., Michalsen, M., Ballock-Dixon, S. J., Zhong, L., & Oostrom, M. (2011a). Demonstration of combined zero-valent Iron and electrical resistance heating for in situ trichloroethene remediation. Environmental Science & Technology, 45, 5346–5351.CrossRefGoogle Scholar
  125. Truex, M. J., Vermeul, V. R., Mendoza, D. P., Fritz, B. G., Mackley, R. D., Oostrom, M., Wietsma, T. W., & Macbeth, T. W. (2011b). Injection of zero-valent iron into an unconfined aquifer using shear-thinning fluids. Ground Water Monitoring and Remediation, 31, 50–58.CrossRefGoogle Scholar
  126. Tufenkji, N., & Elimelech, M. (2004). Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38, 529–536.CrossRefGoogle Scholar
  127. Vecchia, E. D., Luna, M., & Sethi, R. (2009). Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environmental Science & Technology, 43, 8942.CrossRefGoogle Scholar
  128. Velimirovic, M., Tosco, T., Uyttebroek, M., Luna, M., Gastone, F., De Boer, C., Klaas, N., Sapion, H., Eisenmann, H., Larsson, P.-O., Braun, J., Sethi, R., & Bastiaens, L. (2014). Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane. Journal of Contaminant Hydrology, 164, 88–99.CrossRefGoogle Scholar
  129. Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., & Van Cappellen, P. (2000). The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15, 785–790.CrossRefGoogle Scholar
  130. Wang, C.-B., & Zhang, W.-X. (1997). Synthesizing nanoscale Iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31, 2154–2156.CrossRefGoogle Scholar
  131. Wei, Y. T., Wu, S. C., Chou, C. M., Che, C. H., Tsai, S. M., & Lien, H. L. (2010). Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Research, 44, 131–140.CrossRefGoogle Scholar
  132. Wu, Y., Slater, L., Versteeg, R., & LaBrecque, D. (2008). A comparison of the low frequency electrical signatures of iron oxide versus calcite precipitation in granular zero valent iron columns. Journal of Contaminant Hydrology, 95, 154–167.CrossRefGoogle Scholar
  133. Wu, Y., Slater, L. D., & Korte, N. (2005). Effect of precipitation on low frequency electrical properties of zerovalent iron columns. Environmental Science and Technology, 39, 9197–9204.CrossRefGoogle Scholar
  134. Wu, Y., Slaters, L. D., & Korte, N. (2006). Low frequency electrical properties of corroded iron barrier cores. Environmental Science and Technology, 40, 2254–2261.CrossRefGoogle Scholar
  135. Wu, Y., Versteeg, R., Slater, L., & LaBrecque, D. (2009). Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions. Journal of Contaminant Hydrology, 106, 131–143.CrossRefGoogle Scholar
  136. Xiu, Z.-M., Gregory, K. B., Lowry, G. V., & Alvarez, P. J. J. (2010a). Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environmental Science & Technology, 44, 7647–7651.CrossRefGoogle Scholar
  137. Xiu, Z.-M., Jin, Z.-H., Li, T.-L., Mahendra, S., Lowry, G. V., & Alvarez, P. J. J. (2010b). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technology, 101, 1141–1146.CrossRefGoogle Scholar
  138. Yan, W., Herzing, A. A., Kiely, C. J., & Zhang, W.-X. (2010). Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118, 96–104.CrossRefGoogle Scholar
  139. Yao, K.-M., Habibian, M. T., & O'Melia, C. R. (1971). Water and waste water filtration. Concepts and applications. Environmental Science & Technology, 5, 1105–1112.CrossRefGoogle Scholar
  140. Zaa, C. L. Y., McLean, J. E., Dupont, R. R., Norton, J. M., & Sorensen, D. L. (2010). Dechlorinating and iron reducing bacteria distribution in a TCE-contaminated aquifer. Ground Water Monit. Remediat., 30, 46–57. https://doi.org/10.1111/j.1745-6592.2009.01268.x.CrossRefGoogle Scholar
  141. Zhan, J., Zheng, T., Piringer, G., Day, C., McPherson, G. L., Lu, Y., Papadopoulos, K., & John, V. T. (2008). Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 42, 8871–8876.CrossRefGoogle Scholar
  142. Zhang, L., & Manthiram, A. (1997). Chains composed of nanosize metal particles and identifying the factors driving their formation. Applied Physics Letters, 70, 2469–2471.CrossRefGoogle Scholar
  143. Zhong, L., Oostrom, M., Wietsma, T. W., & Covert, M. A. (2008). Enhanced remedial amendment delivery through fluid viscosity modifications: Experiments and numerical simulations. Journal of Contaminant Hydrology, 101, 29–41.CrossRefGoogle Scholar
  144. Zhou, L., Thanh, T. L., Gong, J., Kim, J.-H., Kim, E.-J., & Chang, Y.-S. (2014). Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere, 104, 155–161.CrossRefGoogle Scholar
  145. Zhu, L., Lin, H.-Z., Qi, J.-Q., Xu, X.-Y., & Qi, H.-Y. (2012). Effect of H2 on reductive transformation of p-ClNB in a combined ZVI–anaerobic sludge system. Water Research, 46, 6291–6299.CrossRefGoogle Scholar
  146. Zhu, L., Lin, H., Qi, J., & Xu, X. (2013). Enhanced transformation and dechlorination of p-chloronitrobenzene in the combined ZVI–anaerobic sludge system. Environmental Science and Pollution Research, 20, 6119–6127.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Chris M. Kocur
    • 1
    • 2
    Email author
  • Brent E. Sleep
    • 3
  • Denis M. O’Carroll
    • 4
    • 5
  1. 1.Department of Civil & Environmental EngineeringWestern UniversityLondonCanada
  2. 2.School of Public HealthOregon Health & Science UniversityPortlandUSA
  3. 3.Department of Civil EngineeringUniversity of TorontoTorontoCanada
  4. 4.Water Research LaboratoryConnected Waters InitiativeManly ValeAustralia
  5. 5.School of Civil and Environmental EngineeringUniversity of New South WalesManly ValeAustralia

Personalised recommendations