Advertisement

Mechanistic, Mechanistic-Based Empirical, and Continuum-Based Concepts and Models for the Transport of Polyelectrolyte-Modified Nanoscale Zerovalent Iron (NZVI) in Saturated Porous Media

  • Tanapon Phenrat
  • Peyman Babakhani
  • Jonathan Bridge
  • Ruey-an Doong
  • Gregory V. Lowry
Chapter

Abstract

Controlled emplacement of polyelectrolyte-modified NZVI at a high particle concentration (1–10 g/L) is needed for effective in situ subsurface remediation. For this reason, a modeling tool capable of predicting polyelectrolyte-modified NZVI transport is imperative. However, the deep bed filtration theory is invalid for this purpose because several phenomena governing the transport of polyelectrolyte-modified NZVI in saturated porous media, including detachment, particle agglomeration, straining, and porous media ripening, violate the fundamental assumption of such a classical theory. Thus, this chapter critically reviews the literature of each phenomenon with various kinds of nanoparticles with a special focus on polyelectrolyte-modified NZVI. Then, each phenomenon is elaborated using three kinds of mathematical models, including mechanistic (such as extended DLVO theory), mechanistic-based empirical (correlations to predict NZVI agglomeration and deposition), and continuum-based (Eulerian continuum-based models). These proposed modeling tools can be applied at various scales from column experiments (1-D) to field-scaled operations (3-D) for designing NZVI injection and emplacement in the subsurface.

Keywords

Nanoscale zerovalent iron Transport in porous media Groundwater Mechanism Empirical Numerical Modeling tools 

Notes

Acknowledgments

This work was supported in part by (1) the Thailand Research Fund (TRF) MRG5680129; (2) the National Nanotechnology Center (Thailand), a member of the National Science and Technology Development Agency, through grant number P-11-00989; (3) the National Research Council (R2556B070); and (4) Taiwan’s Ministry of Science and Technology (MOST) under grant no. 104-2221-E-009-020-MY3.

References

  1. Abel, J. S., Stangle, G. C., Schilling, C. H., & Aksay, I. A. (1994). Sedimentation in flocculating colloidal suspensions. Journal of Materials Research, 9, 451–461.CrossRefGoogle Scholar
  2. Abu-Lail, N. I., & Camesano, T. A. (2003). Role of ionic strength on the relationship of biopolymer conformation, dlvo contributions, and steric interactions to bioadhesion of Pseudomonas putidaKT2442. Biomacromolecules, 4, 1000–1012.CrossRefGoogle Scholar
  3. Adamczyk, Z., Nattich-Rak, M., Sadowska, M., Michna, A., & Szczepaniak, K. (2013). Mechanisms of nanoparticle and bioparticle deposition–Kinetic aspects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 3–22.CrossRefGoogle Scholar
  4. Adamczyk, Z., Siwek, B., Zembala, M., & Belouschek, P. (1994). Kinetics of localized adsorption of colloid particles. Advances in Colloid and Interface Science, 48, 151–280.CrossRefGoogle Scholar
  5. Adamczyk, Z., & Weroński, P. (1999). Application of the DLVO theory for particle deposition problems. Advances in Colloid and Interface Science, 83, 137–226.CrossRefGoogle Scholar
  6. Argiller, J. F., & Tirrell, M. (1992). Adsorption of water soluble ionic/hydrophobic diblock copolymer on a hydrophobic surface. Theoretica Chimica Acta, 82, 343–350.CrossRefGoogle Scholar
  7. Auset, M., & Keller, A. A. (2006). Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels. Water Resources Research, 42, W12S02.CrossRefGoogle Scholar
  8. Baalousha, M. (2009). Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Science of the Total Environment, 407, 2093–2101.CrossRefGoogle Scholar
  9. Baalousha, M., Cornelis, G., Kuhlbusch, T., Lynch, I., Nickel, C., Peijnenburg, W., & van den Brink, N. (2016). Modeling nanomaterials fate and uptake in the environment: Current knowledge and future trends. Environmental Science: Nano, 3, 323–345.Google Scholar
  10. Babakhani, P., Bridge, J., Doong, R.-A., & Phenrat, T. (2017). Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review. Advances in Colloid and Interface Science, 246, 75–104.CrossRefGoogle Scholar
  11. Babakhani, P., Fagerlund, F., Shamsai, A., Lowry, G. V., & Phenrat, T. (2018). Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe0 nanoparticles in saturated porous media. Environmental Science and Pollution Research, 25(8), 7180–7199.CrossRefGoogle Scholar
  12. Bai, R., & Tien, C. (1996). A new correlation for the initial filter coefficient under unfavorable surface interactions. Journal of Colloid and Interface Science, 179, 631–634.CrossRefGoogle Scholar
  13. Bai, R., & Tien, C. (1999). Particle deposition under unfavorable surface interactions. Journal of Colloid and Interface Science, 218, 488–499.CrossRefGoogle Scholar
  14. Bardos, P., Bone, B., Daly, P., Elliott, D., Jones, S., Lowry, G., & Merly, C. (2014). A risk/benefit appraisal for the application of nano-scale zero valent iron (nZVI) for the remediation of contaminated sites, “Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment”. NANOREM, Supporting MS3, EU, 7th FP, NMP.2012.1.2.Google Scholar
  15. Basnet, M., Di Tommaso, C., Ghoshal, S., & Tufenkji, N. (2015). Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand. Water Research, 68, 354–363.CrossRefGoogle Scholar
  16. Basnet, M., Ghoshal, S., & Tufenkji, N. (2013). Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Environmental Science & Technology, 47, 13355–13364.CrossRefGoogle Scholar
  17. Ben-Moshe, T., Dror, I., & Berkowitz, B. (2010). Transport of metal oxide nanoparticles in saturated porous media. Chemosphere, 81, 387–393.CrossRefGoogle Scholar
  18. Bergendahl, J., & Grasso, D. (2000). Prediction of colloid detachment in a model porous media: hydrodynamics. Chemical Engineering Science, 55, 1523–1532.CrossRefGoogle Scholar
  19. Birkner, F. B., & Morgan, J. J. (1968). Polymer flocculation kinetics of dilute colloidal suspensions. Journal (American Water Works Association), 60, 175–191.CrossRefGoogle Scholar
  20. Bolster, C. H., Mills, A. L., Hornberger, G. M., & Herman, J. S. (1999). Spatial distribution of deposited bacteria following miscible displacement experiments in intact cores. Water Resources Research, 35, 1797–1807.CrossRefGoogle Scholar
  21. Bottero, J.-Y., Auffan, M., Borschnek, D., Chaurand, P., Labille, J., Levard, C., Masion, A., Tella, M., Rose, J., & Wiesner, M. R. (2015). Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. Comptes Rendus Geoscience, 347, 35–42.CrossRefGoogle Scholar
  22. Bradford, S. A., & Bettahar, M. (2006). Concentration dependent transport of colloids in saturated porous media. Journal of Contaminant Hydrology, 82, 99–117.CrossRefGoogle Scholar
  23. Bradford, S. A., Simunek, J., Bettahar, M., van Genuchten, M. T., & Yates, S. R. (2003). Modeling colloid attachment, straining, and exclusion in saturated porous media. Environmental Science & Technology, 37, 2242–2250.CrossRefGoogle Scholar
  24. Bradford, S. A., Simunek, J., Bettahar, M., van Genuchten, M. T., & Yates, S. R. (2006a). Significance of straining in colloid deposition: Evidence and implications. Water Resources Research, 42, W12S15.Google Scholar
  25. Bradford, S. A., Simunek, J., & Walker, S. L. (2006b). Transport and straining of E. coli O157: H7 in saturated porous media. Water Resources Research, 42, W12S12.Google Scholar
  26. Bradford, S. A., & Toride, N. (2007). A stochastic model for colloid transport and deposition. Journal of Environmental Quality, 36, 1346–1356.CrossRefGoogle Scholar
  27. Bradford, S. A., & Torkzaban, S. (2008). Colloid transport and retention in unsaturated porous media: A review of interface-, collector-, and pore-scale processes and models. Vadose Zone Journal, 7, 667–681.CrossRefGoogle Scholar
  28. Bradford, S. A., & Torkzaban, S. (2015). Determining parameters and mechanisms of colloid retention and release in porous media. Langmuir, 31, 12096–12105.CrossRefGoogle Scholar
  29. Bradford, S. A., Torkzaban, S., Leij, F., & Simunek, J. (2015). Equilibrium and kinetic models for colloid release under transient solution chemistry conditions. Journal of Contaminant Hydrology, 181, 141–152.CrossRefGoogle Scholar
  30. Bradford, S. A., Torkzaban, S., & Simunek, J. (2011a). Modeling colloid transport and retention in saturated porous media under unfavorable attachment conditions. Water Resources Research, 47, W10503.CrossRefGoogle Scholar
  31. Bradford, S. A., Torkzaban, S., & Wiegmann, A. (2011b). Pore-scale simulations to determine the applied hydrodynamic torque and colloid immobilization. Vadose Zone Journal, 10, 252–261.CrossRefGoogle Scholar
  32. Bradford, S. A., Wang, Y., Kim, H., Torkzaban, S., & Šimůnek, J. (2014). Modeling microorganism transport and survival in the subsurface. Journal of Environmental Quality, 43, 421–440.CrossRefGoogle Scholar
  33. Bradford, S. A., Yates, S. R., Bettahar, M., & Simunek, J. (2002). Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 38, 63–61.CrossRefGoogle Scholar
  34. Braun, A., Klumpp, E., Azzam, R., & Neukum, C. (2014). Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam. Science of the Total Environment, 535, 102–112.CrossRefGoogle Scholar
  35. Chakraborti, R. K., Gardner, K. H., Atkinson, J. F., & Van Benschoten, J. E. (2003). Changes in fractal dimension during aggregation. Water Research, 37, 873–883.CrossRefGoogle Scholar
  36. Chatterjee, J., Abdulkareem, S., & Gupta, S. K. (2010). Estimation of colloidal deposition from heterogeneous populations. Water Research, 44, 3365–3374.CrossRefGoogle Scholar
  37. Chatterjee, J., & Gupta, S. K. (2009). An agglomeration-based model for colloid filtration. Environmental Science & Technology, 43, 3694–3699.CrossRefGoogle Scholar
  38. Chen, G., Liu, X., & Su, C. (2011). Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Langmuir, 27, 5393–5402.CrossRefGoogle Scholar
  39. Chen, G., Liu, X., & Su, C. (2012). Distinct effects of humic acid on transport and retention of tio2 rutile nanoparticles in saturated sand columns. Environmental Science & Technology, 46, 7142–7150.CrossRefGoogle Scholar
  40. Chen, K. L., & Elimelech, M. (2006). Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 22, 10994–11001.CrossRefGoogle Scholar
  41. Chen, K. L., & Elimelech, M. (2007). Influence of humic acid on the aggregation kinetics of fullerene (C 60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science, 309, 126–134.CrossRefGoogle Scholar
  42. Cheng, X., Kan, A. T., & Tomson, M. B. (2005). Study of C 60 transport in porous media and the effect of sorbed C 60 on naphthalene transport. Journal of Materials Research, 20, 3244–3254.CrossRefGoogle Scholar
  43. Chowdhury, A. I. A., Krol, M. M., Kocur, C. M., Boparai, H. K., Weber, K. P., Sleep, B. E., & O’Carroll, D. M. (2015). NZVI injection into variably saturated soils: Field and modeling study. Journal of Contaminant Hydrology, 183, 16–28.CrossRefGoogle Scholar
  44. Choy, C. C., Wazne, M., & Meng, X. (2008). Application of an empirical transport model to simulate retention of nanocrystalline titanium dioxide in sand columns. Chemosphere, 71, 1794–1801.CrossRefGoogle Scholar
  45. Chrysikopoulos, C. V., & Katzourakis, V. E. (2015). Colloid particle size-dependent dispersivity. Water Resources Research, 51, 4668.CrossRefGoogle Scholar
  46. Cleasby, J. L., & Baumann, E. R. (1962). Selection of sand filtration rates. Journal (American Water Works Association), 54, 579–602.CrossRefGoogle Scholar
  47. Comba, S., & Braun, J. (2012). A new physical model based on cascading column experiments to reproduce the radial flow and transport of micro-iron particles. Journal of Contaminant Hydrology, 140, 1–11.Google Scholar
  48. Cornelis, G. (2015). Fate descriptors for engineered nanoparticles: the good, the bad, and the ugly. Environmental Science: Nano, 2, 19–26.Google Scholar
  49. Cornelis, G., Pang, L., Doolette, C., Kirby, J. K., & McLaughlin, M. J. (2013). Transport of silver nanoparticles in saturated columns of natural soils. Science of the Total Environment, 463, 120–130.CrossRefGoogle Scholar
  50. Cullen, E., O’Carroll, D. M., Yanful, E. K., & Sleep, B. (2010). Simulation of the subsurface mobility of carbon nanoparticles at the field scale. Advances in Water Resources, 33, 361–371.CrossRefGoogle Scholar
  51. Dale, A., Casman, E. A., Lowry, G. V., Lead, J. R., Viparelli, E., & Baalousha, M. A. (2015a). Modeling nanomaterial environmental fate in aquatic systems. Environmental Science & Technology, 49, 2587–2593.CrossRefGoogle Scholar
  52. Dale, A. L., Lowry, G. V., & Casman, E. A. (2015b). Much ado about α: reframing the debate over appropriate fate descriptors in nanoparticle environmental risk modeling. Environmental Science: Nano, 2, 27–32.Google Scholar
  53. de Marsily, G. (1986). Quantitative hydrogeology; groundwater hydrology for engineers. New York: Academic Press.Google Scholar
  54. Deshpande, P. A., & Shonnard, D. R. (1999). Modeling the effects of systematic variation in ionic strength on the attachment kinetics of Pseudomonas fluorescens UPER-1 in saturated sand columns. Water Resources Research, 35, 1619–1627.CrossRefGoogle Scholar
  55. Dong, H., Zeng, G., Zhang, C., Liang, J., Ahmad, K., Xu, P., He, X., & Lai, M. (2015). Interaction between Cu 2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media. Journal of Environmental Sciences, 32, 180–188.CrossRefGoogle Scholar
  56. Edmiston, P. L., Osborne, C., Reinbold, K. P., Pickett, D. C., & Underwood, L. A. (2011). Pilot scale testing composite swellable organosilica nanoscale zero-valent iron—Iron-Osorb®—for in situ remediation of trichloroethylene. Remediation Journal, 22, 105–123.CrossRefGoogle Scholar
  57. Ehtesabi, H., Ahadian, M. M., Taghikhani, V., & Ghazanfari, M. H. (2013). Enhanced heavy oil recovery in sandstone cores using tio2 nanofluids. Energy & Fuels, 28, 423–430.CrossRefGoogle Scholar
  58. El Badawy, A. M., Aly Hassan, A., Scheckel, K. G., Suidan, M. T., & Tolaymat, T. M. (2013). Key factors controlling the transport of silver nanoparticles in porous media. Environmental Science & Technology, 47, 4039–4045.CrossRefGoogle Scholar
  59. Elimelech, M. (1992). Predicting collision efficiencies of colloidal particles in porous media. Water Research, 26, 1–8.CrossRefGoogle Scholar
  60. Elimelech, M., Gregory, J., Jia, X., & Williams, R. (1995). Particle deposition and aggregation: Measurement, modeling, and simulation. Boston: Butterworth-Heinemann.Google Scholar
  61. Elimelech, M., Jia, X., Gregory, J., & Williams, R. (1998). Particle deposition and aggregation: Measurement, modelling and simulation. Amsterdam: Elsevier.Google Scholar
  62. Elimelech, M., Nagai, M., Ko, C.-H., & Ryan, J. N. (2000). Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environmental Science & Technology, 34, 2143–2148.CrossRefGoogle Scholar
  63. Elliott, D. W., & Zhang, W.-X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35, 4922–4926.CrossRefGoogle Scholar
  64. Fallah, H., Fallah, A., Rahmani, A., Afkhami, M., & Ahmadi, A. (2012). Size exclusion mechanism, suspension flow through porous medium. International Journal of Modern Nonlinear Theory and Application, 1, 113.CrossRefGoogle Scholar
  65. Fan, W., Jiang, X., Lu, Y., Huo, M., Lin, S., & Geng, Z. (2015a). Effects of surfactants on graphene oxide nanoparticles transport in saturated porous media. Journal of Environmental Sciences, 35, 12–19.CrossRefGoogle Scholar
  66. Fan, W., Jiang, X. H., Yang, W., Geng, Z., Huo, M. X., Liu, Z. M., & Zhou, H. (2015b). Transport of graphene oxide in saturated porous media: Effect of cation composition in mixed Na–Ca electrolyte systems. Science of the Total Environment, 511, 509–515.CrossRefGoogle Scholar
  67. Fang, J., Shan, X.-Q., Wen, B., Lin, J.-M., & Owens, G. (2009). Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environmental Pollution, 157, 1101–1109.CrossRefGoogle Scholar
  68. Fang, J., Xu, M.-J., Wang, D.-J., Wen, B., & Han, J.-Y. (2013). Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH. Water Research, 47, 1399–1408.CrossRefGoogle Scholar
  69. Feriancikova, L., & Xu, S. (2012). Deposition and remobilization of graphene oxide within saturated sand packs. Journal of Hazardous Materials, 235, 194–200.CrossRefGoogle Scholar
  70. Flory, J., Kanel, S. R., Racz, L., Impellitteri, C. A., Silva, R. G., & Goltz, M. N. (2013). Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. Journal of Nanoparticle Research, 15, 1–11.CrossRefGoogle Scholar
  71. Foppen, J. W. A., Mporokoso, A., & Schijven, J. F. (2005). Determining straining of Escherichia coli from breakthrough curves. Journal of Contaminant Hydrology, 76, 191–210.CrossRefGoogle Scholar
  72. Friedlander, S. K. (1960a). On the particle-size spectrum of atmospheric aerosols. Journal of Meteorology, 17, 373–374.CrossRefGoogle Scholar
  73. Friedlander, S. K. (1960b). Similarity considerations for the particle-size spectrum of a coagulating, sedimenting aerosol. Journal of Meteorology, 17, 479–483.CrossRefGoogle Scholar
  74. Gargiulo, G., Bradford, S., Šimůnek, J., Ustohal, P., Vereecken, H., & Klumpp, E. (2007). Bacteria transport and deposition under unsaturated conditions: The role of the matrix grain size and the bacteria surface protein. Journal of Contaminant Hydrology, 92, 255–273.CrossRefGoogle Scholar
  75. Gargiulo, G., Bradford, S. A., Simunek, J., Ustohal, P., Vereecken, H., & Klumpp, E. (2008). Bacteria transport and deposition under unsaturated flow conditions: The role of water content and bacteria surface hydrophobicity. Vadose Zone Journal, 7, 406–419.CrossRefGoogle Scholar
  76. Gastone, F., Tosco, T., & Sethi, R. (2014). Guar gum solutions for improved delivery of iron particles in porous media (Part 1): Porous medium rheology and guar gum-induced clogging. Journal of contaminant hydrology, 166, 23–33.CrossRefGoogle Scholar
  77. Godinez, I. G., & Darnault, C. J. G. (2011). Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Research, 45, 839–851.CrossRefGoogle Scholar
  78. Golzar, M., Saghravani, S. F., & Azhdari Moghaddam, M. (2014). Experimental study and numerical solution of poly acrylic acid supported magnetite nanoparticles transport in a one-dimensional porous media. Advances in Materials Science and Engineering, 2014, 8.CrossRefGoogle Scholar
  79. Goudeli, E., Eggersdorfer, M. L., & Pratsinis, S. E. (2015). Coagulation–Agglomeration of fractal-like particles: Structure and self-preserving size distribution. Langmuir, 31, 1320–1327.CrossRefGoogle Scholar
  80. Grasso, D., Subramaniam, K., Butkus, M., Strevett, K., & Bergendahl, J. (2002). A review of non-DLVO interactions in environmental colloidal systems. Reviews in Environmental Science and Biotechnology, 1, 17–38.CrossRefGoogle Scholar
  81. Harendra, S., & Vipulanandan, C. (2010). Fe/Ni bimetallic particles transport in columns packed with sandy clay soil. Industrial & Engineering Chemistry Research, 50, 404–411.CrossRefGoogle Scholar
  82. Hariharan, R., Biver, C., Mays, J., & Russel, W. B. (1998). Ionic strength and curvature effects in flat and highly curved polyelectrolyte brushes. Macromolecules, 31, 7506–7513.CrossRefGoogle Scholar
  83. Harvey, R. W., & Garabedian, S. P. (1991). Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer. Environmental Science & Technology, 25, 178–185.CrossRefGoogle Scholar
  84. Hashemi, R., Nassar, N. N., & Pereira Almao, P. (2013). Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles: A study of hot fluid flooding for athabasca bitumen recovery. Energy & Fuels, 27, 2194–2201.CrossRefGoogle Scholar
  85. He, F., Zhang, M., Qian, T., & Zhao, D. (2009). Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. Journal of Colloid and Interface Science, 334, 96–102.CrossRefGoogle Scholar
  86. He, J.-Z., Li, C.-C., Wang, D.-J., & Zhou, D.-M. (2015). Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media. Journal of Hazardous Materials, 300, 467–474.CrossRefGoogle Scholar
  87. Herzig, J. P., Leclerc, D. M., & Goff, P. L. (1970). Flow of suspensions through porous media—Application to deep filtration. Industrial & Engineering Chemistry, 62, 8–35.CrossRefGoogle Scholar
  88. Holthoff, H., Egelhaaf, S. U., Borkovec, M., Schurtenberger, P., & Sticher, H. (1996). Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering. Langmuir, 12, 5541–5549.CrossRefGoogle Scholar
  89. Holthoff, H., Schmitt, A., Fernández-Barbero, A., Borkovec, M., ángel Cabrerızo-Vılchez, M., Schurtenberger, P., & Hidalgo-Alvarez, R. (1997). Measurement of absolute coagulation rate constants for colloidal particles: comparison of single and multiparticle light scattering techniques. Journal of Colloid and Interface Science, 192, 463–470.CrossRefGoogle Scholar
  90. Hosseini, S. M., & Tosco, T. (2013). Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column. Water Research, 47, 326–338.CrossRefGoogle Scholar
  91. Hotze, E. M., Phenrat, T., & Lowry, G. V. (2010). Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. Journal of Environmental Quality, 39, 1909–1924.CrossRefGoogle Scholar
  92. Howington, S. E., Peters, J. F., & Illangasekare, T. H. (1997). Discrete network modeling for field-scale flow and transport through porous media. DTIC Document.Google Scholar
  93. Huang, P. M., Li, Y., & Sumner, M. E. (2011). Handbook of soil sciences: Properties and processes. New York: CRC Press Taylor and Francis Group an informa business.CrossRefGoogle Scholar
  94. Hunt, J. R. (1982). Self-similar particle-size distributions during coagulation: Theory and experimental verification. Journal of Fluid Mechanics, 122, 169–185.CrossRefGoogle Scholar
  95. Illangasekare, T. H., Frippiat, C. C., & Fuˇcík, R. (2010). Dispersion and mass transfer coefficients in groundwater of near-surface geologic formations. Boca Raton: CRC Press/Taylor and Francis Group.Google Scholar
  96. Ives, K. J. (1963). Simplified rational analysis of filter behaviour. In ICE proceedings (pp. 345–364). Thomas Telford.Google Scholar
  97. Ives, K. J. (1970). Rapid filtration. Water Research, 4, 201–223.CrossRefGoogle Scholar
  98. Iwasaki, T., Slade Jr., J. J., & Stanley, W. E. (1937). Some notes on sand filtration [with Discussion]. Journal (American Water Works Association), 29, 1591–1602.CrossRefGoogle Scholar
  99. Jacobson, M. Z. (2005). Fundamentals of atmospheric modeling. New York: Cambridge University Press.CrossRefGoogle Scholar
  100. James, S. C., & Chrysikopoulos, C. V. (2003). Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture. Journal of Colloid and Interface Science, 263, 288–295.CrossRefGoogle Scholar
  101. Jeffrey, D. J. (1981). Quasi-stationary approximations for the size distribution of aerosols. Journal of the Atmospheric Sciences, 38, 2440–2443.CrossRefGoogle Scholar
  102. Jegatheesan, V., & Vigneswaran, S. (2005). Deep bed filtration: Mathematical models and observations. Critical Reviews in Environmental Science and Technology, 35, 515–569.CrossRefGoogle Scholar
  103. Jiang, X., Tong, M., & Kim, H. (2012a). Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media. Journal of Colloid and Interface Science, 386, 34–43.CrossRefGoogle Scholar
  104. Jiang, X., Tong, M., Lu, R., & Kim, H. (2012b). Transport and deposition of ZnO nanoparticles in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 401, 29–37.CrossRefGoogle Scholar
  105. Jiang, X., Wang, X., Tong, M., & Kim, H. (2013). Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm. Environmental Pollution, 174, 38–49.CrossRefGoogle Scholar
  106. Johnson, C. P., Li, X., & Logan, B. E. (1996). Settling velocities of fractal aggregates. Environmental Science & Technology, 30, 1911–1918.CrossRefGoogle Scholar
  107. Johnson, P. R., & Elimelech, M. (1995). Dynamics of colloid deposition in porous media: Blocking based on random sequential adsorption. Langmuir, 11, 801–812.CrossRefGoogle Scholar
  108. Johnson, W. P., Li, X., & Assemi, S. (2007). Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Advances in Water Resources, 30, 1432–1454.CrossRefGoogle Scholar
  109. Johnson, W. P., Ma, H., & Pazmino, E. (2011). Straining credibility: A general comment regarding common arguments used to infer straining as the mechanism of colloid retention in porous media. Environmental Science & Technology, 45, 3831–3832.CrossRefGoogle Scholar
  110. Jones, E. H., & Su, C. (2012). Fate and transport of elemental copper (Cu 0) nanoparticles through saturated porous media in the presence of organic materials. Water Research, 46, 2445–2456.CrossRefGoogle Scholar
  111. Jones, E. H., & Su, C. (2014). Transport and retention of zinc oxide nanoparticles in porous media: Effects of natural organic matter versus natural organic ligands at circumneutral pH. Journal of Hazardous Materials, 275, 79–88.CrossRefGoogle Scholar
  112. Kanel, S. R., Flory, J., Meyerhoefer, A., Fraley, J. L., Sizemore, I. E., & Goltz, M. N. (2013). Influence of natural organic matter on fate and transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. Journal of Nanoparticle Research, 17, 1–13.Google Scholar
  113. Kasel, D., Bradford, S. A., Šimůnek, J., Heggen, M., Vereecken, H., & Klumpp, E. (2013). Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects of input concentration and grain size. Water Research, 47, 933–944.CrossRefGoogle Scholar
  114. Keir, G., Jegatheesan, V., & Vigneswaran, S. (2009). Deep bed filtration: modeling theory and practice. In V. Saravanamuthu (Ed.), Water and wastewater treatment technologies (pp. 263–307). Oxford, UK: Eolss Publishers.Google Scholar
  115. Keller, A. A., Sirivithayapakorn, S., & Chrysikopoulos, C. V. (2004). Early breakthrough of colloids and bacteriophage MS2 in a water-saturated sand column. Water Resources Research, 40, W08304.Google Scholar
  116. Kelly, R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., ElSawah, S., Hamilton, S. H., Henriksen, H. J., Kuikka, S., Maier, H. R., & Rizzoli, A. E. (2013). Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling & Software, 47, 159–181.CrossRefGoogle Scholar
  117. Kini, G. C., Yu, J., Wang, L., Kan, A. T., Biswal, S. L., Tour, J. M., Tomson, M. B., & Wong, M. S. (2014). Salt-and temperature-stable quantum dot nanoparticles for porous media flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 492–500.CrossRefGoogle Scholar
  118. Köber, R., Hollert, H., Hornbruch, G., Jekel, M., Kamptner, A., Klaas, N., Maes, H., Mangold, K. M., Martac, E., & Matheis, A. (2014). Nanoscale zero-valent iron flakes for groundwater treatment. Environmental Earth Sciences, 72, 3339–3352.CrossRefGoogle Scholar
  119. Kocur, C. M., O'Carroll, D. M., & Sleep, B. E. (2013). Impact of nZVI stability on mobility in porous media. Journal of Contaminant Hydrology, 145, 17–25.CrossRefGoogle Scholar
  120. Kretzschmar, R., Borkovec, M., Grolimund, D., & Elimelech, M. (1999). Mobile subsurface colloids and their role in contaminant transport. Advances in Agronomy, 66, 121–193.CrossRefGoogle Scholar
  121. Krol, M. M., Oleniuk, A. J., Kocur, C. M., Sleep, B. E., Bennett, P., Xiong, Z., & O’Carroll, D. M. (2013). A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environmental Science & Technology, 47, 7332–7340.CrossRefGoogle Scholar
  122. Kurlanda-Witek, H., Ngwenya, B. T., & Butler, I. B. (2014). Transport of bare and capped zinc oxide nanoparticles is dependent on porous medium composition. Journal of Contaminant Hydrology, 162, 17–26.CrossRefGoogle Scholar
  123. Kuznar, Z. A., & Elimelech, M. (2007). Direct microscopic observation of particle deposition in porous media: Role of the secondary energy minimum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294, 156–162.CrossRefGoogle Scholar
  124. Landkamer, L. L., Harvey, R. W., Scheibe, T. D., & Ryan, J. N. (2013). Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model. Water Resources Research, 49, 2952–2965.CrossRefGoogle Scholar
  125. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.CrossRefGoogle Scholar
  126. Lanphere, J. D., Luth, C. J., & Walker, S. L. (2013). Effects of solution chemistry on the transport of graphene oxide in saturated porous media. Environmental Science & Technology, 47, 4255–4261.CrossRefGoogle Scholar
  127. Laumann, S., Micić, V., & Hofmann, T. (2014). Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Water Research, 50, 70–79.CrossRefGoogle Scholar
  128. Laumann, S., Micić, V., Lowry, G. V., & Hofmann, T. (2013). Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environmental Pollution, 179, 53–60.CrossRefGoogle Scholar
  129. Lee, D. G., Bonner, J. S., Garton, L. S., Ernest, A. N. S., & Autenrieth, R. L. (2000). Modeling coagulation kinetics incorporating fractal theories: A fractal rectilinear approach. Water Research, 34, 1987–2000.CrossRefGoogle Scholar
  130. Lee, D. G., Bonner, J. S., Garton, L. S., Ernest, A. N. S., & Autenrieth, R. L. (2002). Modeling coagulation kinetics incorporating fractal theories: Comparison with observed data. Water Research, 36, 1056–1066.CrossRefGoogle Scholar
  131. Li, X.-Y., & Logan, B. E. (2001). Permeability of fractal aggregates. Water Research, 35, 3373–3380.CrossRefGoogle Scholar
  132. Li, X., & Logan, B. E. (1997). Collision frequencies of fractal aggregates with small particles by differential sedimentation. Environmental Science & Technology, 31, 1229–1236.CrossRefGoogle Scholar
  133. Li, X., Scheibe, T. D., & Johnson, W. P. (2004). Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: A general phenomenon. Environmental Science & Technology, 38, 5616–5625.CrossRefGoogle Scholar
  134. Li, X., Zhang, P., Lin, C. L., & Johnson, W. P. (2005). Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions. Environmental Science & Technology, 39, 4012–4020.CrossRefGoogle Scholar
  135. Li, Z., Hassan, A. A., Sahle-Demessie, E., & Sorial, G. A. (2013). Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters. Water Research, 47, 6457–6466.CrossRefGoogle Scholar
  136. Li, Z., Sahle-Demessie, E., Hassan, A. A., & Sorial, G. A. (2011). Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Research, 45, 4409–4418.CrossRefGoogle Scholar
  137. Liang, Y., Bradford, S. A., Simunek, J., Heggen, M., Vereecken, H., & Klumpp, E. (2013a). Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Environmental Science & Technology, 47, 12229–12237.CrossRefGoogle Scholar
  138. Liang, Y., Bradford, S. A., Simunek, J., Vereecken, H., & Klumpp, E. (2013b). Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Water Research, 47, 2572–2582.CrossRefGoogle Scholar
  139. Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthès, V., & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 22, 249–275.CrossRefGoogle Scholar
  140. Lin, S., & Wiesner, M. R. (2012). Deposition of aggregated nanoparticles – A theoretical and experimental study on the effect of aggregation state on the affinity between nanoparticles and a collector surface. Environmental Science & Technology, 46, 13270–13277.CrossRefGoogle Scholar
  141. Liu, H. H., Surawanvijit, S., Rallo, R., Orkoulas, G., & Cohen, Y. (2011). Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation. Environmental Science & Technology, 45, 9284–9292.CrossRefGoogle Scholar
  142. Liu, L., Gao, B., Wu, L., Sun, Y., & Zhou, Z. (2015). Effects of surfactant type and concentration on graphene retention and transport in saturated porous media. Chemical Engineering Journal, 262, 1187–1191.CrossRefGoogle Scholar
  143. Liu, L., Gao, B., Wu, L., Yang, L., Zhou, Z., & Wang, H. (2013). Effects of pH and surface metal oxyhydroxides on deposition and transport of carboxyl-functionalized graphene in saturated porous media. Journal of Nanoparticle Research, 15, 1–8.Google Scholar
  144. Logan, B. E., Jewett, D. G., Arnold, R. G., Bouwer, E. J., & O'Melia, C. R. (1995a). Clarification of clean-bed filtration models. Journal of Environmental Engineering, 121, 869–873.CrossRefGoogle Scholar
  145. Logan, B. E., Passow, U., Alldredge, A. L., Grossartt, H.-P., & Simont, M. (1995b). Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep Sea Research Part II: Topical Studies in Oceanography, 42, 203–214.CrossRefGoogle Scholar
  146. Lv, X., Gao, B., Sun, Y., Shi, X., Xu, H., & Wu, J. (2014). Effects of humic acid and solution chemistry on the retention and transport of cerium dioxide nanoparticles in saturated porous media. Water, Air, & Soil Pollution, 225, 1–9.CrossRefGoogle Scholar
  147. McDowell-Boyer, L. M., Hunt, J. R., & Sitar, N. (1986). Particle transport through porous media. Water Resources Research, 22, 1901–1921.CrossRefGoogle Scholar
  148. Mehmani, Y., & Balhoff, M. T. (2015a). Eulerian network modeling of longitudinal dispersion. Water Resources Research, 51, 8586–8606.CrossRefGoogle Scholar
  149. Mehmani, Y., & Balhoff, M. T. (2015b). Mesoscale and hybrid models of fluid flow and solute transport. Reviews in Mineralogy and Geochemistry, 80, 433–459.CrossRefGoogle Scholar
  150. Meng, Z., Hashmi, S. M., & Elimelech, M. (2013). Aggregation rate and fractal dimension of fullerene nanoparticles via simultaneous multiangle static and dynamic light scattering measurement. Journal of Colloid and Interface Science, 392, 27–33.CrossRefGoogle Scholar
  151. Molnar, I. L., Johnson, W. P., Gerhard, J. I., Willson, C. S., & O’Carroll, D. M. (2015). Predicting colloid transport through saturated porous media: A critical review. Water Resources Research, 51, 6804–6845.CrossRefGoogle Scholar
  152. Nascimento, A. G., Totola, M. R., Souza, C. S., Borges, M. T., & Borges, A. C. (2006). Temporal and spatial dynamics of blocking and ripening effects on bacterial transport through a porous system: A possible explanation for CFT deviation. Colloids and Surfaces B: Biointerfaces, 53, 241–244.CrossRefGoogle Scholar
  153. Neukum, C., Braun, A., & Azzam, R. (2014a). Transport of engineered silver (Ag) nanoparticles through partially fractured sandstones. Journal of Contaminant Hydrology, 164, 181–192.CrossRefGoogle Scholar
  154. Neukum, C., Braun, A., & Azzam, R. (2014b). Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones. Journal of Contaminant Hydrology, 158, 1–13.CrossRefGoogle Scholar
  155. Nowack, B., Baalousha, M., Bornhöft, N., Chaudhry, Q., Cornelis, G., Cotterill, J., Gondikas, A., Hassellöv, M., Lead, J., & Mitrano, D. M. (2015). Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. Environmental Science: Nano, 2, 421.Google Scholar
  156. O'Carroll, D. M., Bradford, S. A., & Abriola, L. M. (2004). Infiltration of PCE in a system containing spatial wettability variations. Journal of Contaminant Hydrology, 73, 39–63.CrossRefGoogle Scholar
  157. O’Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2012). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.CrossRefGoogle Scholar
  158. Parker, J. C., Van Genuchten, T., & Virginia Agricultural Experiment, S. (1984). Determining transport parameters from laboratory and field tracer experiments. Virginia: Virginia Agricultural Experiment Station.Google Scholar
  159. Peijnenburg, W., Praetorius, A., Scott-Fordsmand, J., & Cornelis, G. (2016). Fate assessment of engineered nanoparticles in solids dominated media–Current insights and the way forward. Environmental Pollution, 218, 1365–1369.CrossRefGoogle Scholar
  160. Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M., & Tufenkji, N. (2010). Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environmental Science & Technology, 44, 6532–6549.CrossRefGoogle Scholar
  161. Phenrat, T., Cihan, A., Kim, H.-J., Mital, M., Illangasekare, T., & Lowry, G. V. (2010a). Transport and deposition of polymer-modified Fe0 Nanoparticles in 2-D heterogeneous porous media: Effects of particle concentration, Fe0 content, and coatings. Environmental Science & Technology, 44, 9086–9093.CrossRefGoogle Scholar
  162. Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010b). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118, 152–164.CrossRefGoogle Scholar
  163. Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085.CrossRefGoogle Scholar
  164. Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284–290.CrossRefGoogle Scholar
  165. Phenrat, T., Song, J. E., Cisneros, C. M., Schoenfelder, D. P., Tilton, R. D., & Lowry, G. V. (2010c). Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environmental Science & Technology, 44, 4531–4538.CrossRefGoogle Scholar
  166. Porubcan, A. A., & Xu, S. (2011). Colloid straining within saturated heterogeneous porous media. Water Research, 45, 1796–1806.CrossRefGoogle Scholar
  167. Praetorius, A., Scheringer, M., & Hungerbühler, K. (2012). Development of environmental fate models for engineered nanoparticles – A case study of tio2 nanoparticles in the rhine river. Environmental Science & Technology, 46, 6705–6713.CrossRefGoogle Scholar
  168. Prieve, D. C., & Hoysan, P. M. (1978). Role of colloidal forces in hydrodynamic chromatography. Journal of Colloid and Interface Science, 64, 201–213.CrossRefGoogle Scholar
  169. Qi, Z., Zhang, L., & Chen, W. (2014a). Transport of graphene oxide nanoparticles in saturated sandy soil. Environmental Science: Processes & Impacts, 16, 2268–2277.Google Scholar
  170. Qi, Z., Zhang, L., Wang, F., Hou, L., & Chen, W. (2014b). Factors controlling transport of graphene oxide nanoparticles in saturated sand columns. Environmental Toxicology and Chemistry, 33, 998–1004.CrossRefGoogle Scholar
  171. Quik, J. T. K., van De Meent, D., & Koelmans, A. A. (2014a). Simplifying modeling of nanoparticle aggregation–sedimentation behavior in environmental systems: A theoretical analysis. Water Research, 62, 193–201.CrossRefGoogle Scholar
  172. Quik, J. T. K., Velzeboer, I., Wouterse, M., Koelmans, A. A., & Van de Meent, D. (2014b). Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Research, 48, 269–279.CrossRefGoogle Scholar
  173. Rahman, T., George, J., & Shipley, H. J. (2013). Transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Science of the Total Environment, 463–464, 565–571.CrossRefGoogle Scholar
  174. Rahman, T., Millwater, H., & Shipley, H. J. (2014). Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Science of the Total Environment, 499, 402–412.CrossRefGoogle Scholar
  175. Rajagopalan, R., & Tien, C. (1976). Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model. AIChE Journal, 22, 523–533.CrossRefGoogle Scholar
  176. Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2012). Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Research, 46, 1735–1744.CrossRefGoogle Scholar
  177. Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2014). Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Research, 50, 80–90.CrossRefGoogle Scholar
  178. Risovic, D., & Martinis, M. (1994). The role of coagulation and sedimentation mechanisms in the two-component model of sea-particle size distribution. Fizika, 3, 103–118.Google Scholar
  179. Rosansky, S., Condit, W., Sirabian, R., 2013. Best practices for injection and distribution of amendments. Technical Report TR-NAVFAC-EXWC-EV.Google Scholar
  180. Ryan, J. N., & Elimelech, M. (1996). Colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 1–56.CrossRefGoogle Scholar
  181. Saiers, J. E., & Hornberger, G. M. (1996). Migration of 137Cs through quartz sand: Experimental results and modeling approaches. Journal of Contaminant Hydrology, 22, 255–270.CrossRefGoogle Scholar
  182. Saiers, J. E., Hornberger, G. M., & Liang, L. (1994). First-and second-order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resources Research, 30, 2499–2506.CrossRefGoogle Scholar
  183. Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24, 45–57.CrossRefGoogle Scholar
  184. Sasidharan, S., Torkzaban, S., Bradford, S. A., Dillon, P. J., & Cook, P. G. (2014). Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 169–179.CrossRefGoogle Scholar
  185. Schaaf, P., & Talbot, J. (1989). Surface exclusion effects in adsorption processes. The Journal of Chemical Physics, 91, 4401–4409.CrossRefGoogle Scholar
  186. Scheibe, T. D., & Wood, B. D. (2003). A particle-based model of size or anion exclusion with application to microbial transport in porous media. Water Resources Research, 39, 1080.CrossRefGoogle Scholar
  187. Schijven, J. F., Hassanizadeh, S. M., & de Bruin, R. H. A. M. (2002). Two-site kinetic modeling of bacteriophages transport through columns of saturated dune sand. Journal of Contaminant Hydrology, 57, 259–279.CrossRefGoogle Scholar
  188. Schijven, J. K., & Hassanizadeh, S. M. (2000). Removal of viruses by soil passage: Overview of modeling, processes, and parameters. Critical Reviews in Environmental Science and Technology, 30, 49–127.CrossRefGoogle Scholar
  189. Seetha, N., Majid Hassanizadeh, S., Kumar, M., & Raoof, A. (2015). Correlation equations for average deposition rate coefficients of nanoparticles in a cylindrical pore. Water Resources Research, 51, 8034–8059.CrossRefGoogle Scholar
  190. Shang, J., Liu, C., & Wang, Z. (2013). Transport and retention of engineered nanoporous particles in porous media: effects of concentration and flow dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 417, 89–98.CrossRefGoogle Scholar
  191. Shellenberger, K., & Logan, B. E. (2002). Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environmental Science & Technology, 36, 184–189.CrossRefGoogle Scholar
  192. Shen, C., Huang, Y., Li, B., & Jin, Y. (2008). Effects of solution chemistry on straining of colloids in porous media under unfavorable conditions. Water Resources Research, 44, W05419.CrossRefGoogle Scholar
  193. Skopp, J. (1986). Analysis of time-dependent chemical processes in soils. Journal of Environmental Quality, 15, 205–213.CrossRefGoogle Scholar
  194. Smoluchowski, M. (1917). Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift fuer Physikalische Chemie, 92, 129–168.Google Scholar
  195. Song, L., & Elimelech, M. (1993). Dynamics of colloid deposition in porous media: modeling the role of retained particles. Colloids and Surfaces A, 73, 49–63.CrossRefGoogle Scholar
  196. Sun, N., Elimelech, M., Sun, N.-Z., & Ryan, J. N. (2001). A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media. Journal of Contaminant Hydrology, 49, 173–199.CrossRefGoogle Scholar
  197. Sun, P., Shijirbaatar, A., Fang, J., Owens, G., Lin, D., & Zhang, K. (2015a). Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns. Science of the Total Environment, 505, 189–198.CrossRefGoogle Scholar
  198. Sun, Y., Gao, B., Bradford, S. A., Wu, L., Chen, H., Shi, X., & Wu, J. (2015b). Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size. Water Research, 68, 24–33.CrossRefGoogle Scholar
  199. Swift, D. L., & Friedlander, S. K. (1964). The coagulation of hydrosols by Brownian motion and laminar shear flow. Journal of Colloid Science, 19, 621–647.CrossRefGoogle Scholar
  200. Szilagyi, I., Szabo, T., Desert, A., Trefalt, G., Oncsik, T., & Borkovec, M. (2014). Particle aggregation mechanisms in ionic liquids. Physical Chemistry Chemical Physics, 16, 9515–9524.CrossRefGoogle Scholar
  201. Taghavy, A., Mittelman, A., Wang, Y., Pennell, K. D., & Abriola, L. M. (2013). Mathematical modeling of the transport and dissolution of citrate-stabilized silver nanoparticles in porous media. Environmental Science & Technology, 47, 8499–8507.Google Scholar
  202. Taghavy, A., Pennell, K. D., & Abriola, L. M. (2014). Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach. Journal of Contaminant Hydrology, 172, 48–60.CrossRefGoogle Scholar
  203. Taghavy, A., Pennell, K. D., & Abriola, L. M. (2015). Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach. Journal of Contaminant Hydrology, 172, 48–60.CrossRefGoogle Scholar
  204. Tan, Y., Gannon, J. T., Baveye, P., & Alexander, M. (1994). Transport of bacteria in an aquifer sand: Experiments and model simulations. Water Resources Research, 30, 3243–3252.CrossRefGoogle Scholar
  205. Tang, P., & Raper, J. A. (2002). Modelling the settling behaviour of fractal aggregates–A review. Powder Technology, 123, 114–125.CrossRefGoogle Scholar
  206. Therezien, M., Thill, A., & Wiesner, M. R. (2014). Importance of heterogeneous aggregation for NP fate in natural and engineered systems. Science of the Total Environment, 485, 309–318.CrossRefGoogle Scholar
  207. Tian, Y., Gao, B., Silvera-Batista, C., & Ziegler, K. J. (2010). Transport of engineered nanoparticles in saturated porous media. Journal of Nanoparticle Research, 12, 2371–2380.CrossRefGoogle Scholar
  208. Tian, Y., Gao, B., Wang, Y., Morales, V. L., Carpena, R. M., Huang, Q., & Yang, L. (2012). Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns. Journal of Hazardous Materials, 213, 265–272.CrossRefGoogle Scholar
  209. Tiraferri, A., & Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. Journal of Nanoparticle Research, 11, 635–645.CrossRefGoogle Scholar
  210. Toloni, I., Lehmann, F., & Ackerer, P. (2014). Modeling the effects of water velocity on TiO2 nanoparticles transport in saturated porous media. Journal of Contaminant Hydrology, 171, 42–48.CrossRefGoogle Scholar
  211. Tong, M., & Johnson, W. P. (2007). Colloid population heterogeneity drives hyperexponential deviation from classic filtration theory. Environmental Science & Technology, 41, 493–499.CrossRefGoogle Scholar
  212. Tong, M., Ma, H., & Johnson, W. P. (2008). Funneling of flow into grain-to-grain contacts drives colloid−colloid aggregation in the presence of an energy barrier. Environmental Science & Technology, 42, 2826–2832.CrossRefGoogle Scholar
  213. Torkzaban, S., & Bradford, S. A. (2016). Critical role of surface roughness on colloid retention and release in porous media. Water Research, 88, 274–284.CrossRefGoogle Scholar
  214. Torkzaban, S., Bradford, S. A., Vanderzalm, J. L., Patterson, B. M., Harris, B., & Prommer, H. (2015). Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity. Journal of Contaminant Hydrology, 181, 161–171.CrossRefGoogle Scholar
  215. Torkzaban, S., Bradford, S. A., & Walker, S. L. (2007). Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir, 23, 9652–9660.CrossRefGoogle Scholar
  216. Torkzaban, S., Bradford, S. A., Wan, J., Tokunaga, T., & Masoudih, A. (2013). Release of quantum dot nanoparticles in porous media: Role of cation exchange and aging time. Environmental Science & Technology, 47, 11528–11536.CrossRefGoogle Scholar
  217. Torkzaban, S., Kim, H. N., Simunek, J., & Bradford, S. A. (2010a). Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry. Environmental Science & Technology, 44, 1662–1669.CrossRefGoogle Scholar
  218. Torkzaban, S., Kim, Y., Mulvihill, M., Wan, J., & Tokunaga, T. K. (2010b). Transport and deposition of functionalized CdTe nanoparticles in saturated porous media. Journal of Contaminant Hydrology, 118, 208–217.CrossRefGoogle Scholar
  219. Torkzaban, S., Wan, J., Tokunaga, T. K., & Bradford, S. A. (2012). Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand. Journal of Contaminant Hydrology, 136, 86–95.CrossRefGoogle Scholar
  220. Tosco, T., Gastone, F., & Sethi, R. (2014). Guar gum solutions for improved delivery of iron particles in porous media (Part 2): Iron transport tests and modeling in radial geometry. Journal of Contaminant Hydrology, 166, 34–51.CrossRefGoogle Scholar
  221. Tosco, T., & Sethi, R. (2010). Transport of non-Newtonian suspensions of highly concentrated micro-and nanoscale iron particles in porous media: A modeling approach. Environmental Science & Technology, 44, 9062–9068.CrossRefGoogle Scholar
  222. Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44–48.CrossRefGoogle Scholar
  223. Treumann, S., Torkzaban, S., Bradford, S. A., Visalakshan, R. M., & Page, D. (2014). An explanation for differences in the process of colloid adsorption in batch and column studies. Journal of Contaminant Hydrology, 164, 219–229.CrossRefGoogle Scholar
  224. Tufenkji, N., & Elimelech, M. (2004a). Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38, 529–536.CrossRefGoogle Scholar
  225. Tufenkji, N., & Elimelech, M. (2004b). Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir, 20, 10818–10828.CrossRefGoogle Scholar
  226. Tufenkji, N., & Elimelech, M. (2005). Spatial distributions of Cryptosporidium oocysts in porous media: Evidence for dual mode deposition. Environmental Science & Technology, 39, 3620–3629.CrossRefGoogle Scholar
  227. Van Genuchten, M. T., & Wierenga, P. J. (1976). Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Science Society of America Journal, 40, 473–480.CrossRefGoogle Scholar
  228. Wang, C., Bobba, A. D., Attinti, R., Shen, C., Lazouskaya, V., Wang, L.-P., & Jin, Y. (2012a). Retention and transport of silica nanoparticles in saturated porous media: Effect of concentration and particle size. Environmental Science & Technology, 46, 7151–7158.CrossRefGoogle Scholar
  229. Wang, D., Bradford, S. A., Harvey, R. W., Gao, B., Cang, L., & Zhou, D. (2012b). Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. Environmental Science & Technology, 46, 2738–2745.CrossRefGoogle Scholar
  230. Wang, D., Bradford, S. A., Harvey, R. W., Hao, X., & Zhou, D. (2012c). Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid. Journal of Hazardous Materials, 229, 170–176.CrossRefGoogle Scholar
  231. Wang, D., Bradford, S. A., Paradelo, M., Peijnenburg, W. J. G. M., & Zhou, D. (2012d). Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand. Soil Science Society of America Journal, 76, 375–388.CrossRefGoogle Scholar
  232. Wang, D., Ge, L., He, J., Zhang, W., Jaisi, D. P., & Zhou, D. (2014a). Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. Journal of Contaminant Hydrology, 164, 35–48.CrossRefGoogle Scholar
  233. Wang, D., Jaisi, D. P., Yan, J., Jin, Y., & Zhou, D. (2015a). Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils. Vadose Zone Journal, 14, 2–13.Google Scholar
  234. Wang, D., Jin, Y., & Jaisi, D. (2015b). Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation. Journal of Contaminant Hydrology, 182, 194–209.CrossRefGoogle Scholar
  235. Wang, D., Jin, Y., & Jaisi, D. P. (2015c). Effect of size-selective retention on the cotransport of hydroxyapatite and goethite nanoparticles in saturated porous media. Environmental Science & Technology, 49, 8461–8470.CrossRefGoogle Scholar
  236. Wang, D., Paradelo, M., Bradford, S. A., Peijnenburg, W. J. G. M., Chu, L., & Zhou, D. (2011). Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition. Water Research, 45, 5905–5915.CrossRefGoogle Scholar
  237. Wang, D., Su, C., Liu, C., & Zhou, D. (2014b). Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 58–66.CrossRefGoogle Scholar
  238. Wang, H. F., & Anderson, M. P. (1995). Introduction to groundwater modeling: Finite difference and finite element methods. New York: Academic Press.Google Scholar
  239. Wang, X., Cai, L., Han, P., Lin, D., Kim, H., & Tong, M. (2014c). Cotransport of multi-walled carbon nanotubes and titanium dioxide nanoparticles in saturated porous media. Environmental Pollution, 195, 31–38.CrossRefGoogle Scholar
  240. Wang, Y., Becker, M. D., Colvin, V. L., Abriola, L. M., & Pennell, K. D. (2014d). Influence of residual polymer on nanoparticle deposition in porous media. Environmental Science & Technology, 48, 10664–10671.CrossRefGoogle Scholar
  241. Wang, Y., Zhu, H., Becker, M. D., Englehart, J., Abriola, L. M., Colvin, V. L., & Pennell, K. D. (2013). Effect of surface coating composition on quantum dot mobility in porous media. Journal of Nanoparticle Research, 15, 1–16.Google Scholar
  242. Wang, Z., Jin, Y., Shen, C., Li, T., Huang, Y., & Li, B. (2016). Spontaneous detachment of colloids from primary energy minima by brownian diffusion. PloS one, 11, e0147368.CrossRefGoogle Scholar
  243. Xu, S., Gao, B., & Saiers, J. E. (2006). Straining of colloidal particles in saturated porous media. Water Resources Research, 42, W12S16.CrossRefGoogle Scholar
  244. Xu, S., Liao, Q., & Saiers, J. E. (2008). Straining of nonspherical colloids in saturated porous media. Environmental Science & Technology, 42, 771–778.CrossRefGoogle Scholar
  245. Xu, S., & Saiers, J. E. (2009). Colloid straining within water-saturated porous media: Effects of colloid size nonuniformity. Water Resources Research, 45, W05501.CrossRefGoogle Scholar
  246. Yao, K.-M., Habibian, M. T., & O'Melia, C. R. (1971). Water and waste water filtration. Concepts and applications. Environmental Science & Technology, 5, 1105–1112.CrossRefGoogle Scholar
  247. Yoon, J. S., Germaine, J. T., & Culligan, P. J. (2006). Visualization of particle behavior within a porous medium: Mechanisms for particle filtration and retardation during downward transport. Water Resources Research, 42, 1–16.CrossRefGoogle Scholar
  248. Yu, H., Fu, J., Dang, L., Cheong, Y., Tan, H., & Wei, H. (2015a). Prediction of the particle size distribution parameters in a high shear granulation process using a key parameter definition combined artificial neural network model. Industrial & Engineering Chemistry Research, 54, 10825–10834.CrossRefGoogle Scholar
  249. Yu, H., He, Y., Li, P., Li, S., Zhang, T., Rodriguez-Pin, E., Du, S., Wang, C., Cheng, S., & Bielawski, C. W. (2015b). Flow enhancement of water-based nanoparticle dispersion through microscale sedimentary rocks. Scientific Reports, 5, 8702.CrossRefGoogle Scholar
  250. Zhang, L., Hou, L., Wang, L., Kan, A. T., Chen, W., & Tomson, M. B. (2012). Transport of fullerene nanoparticles (n C60) in saturated sand and sandy soil: Controlling factors and modeling. Environmental Science & Technology, 46, 7230–7238.CrossRefGoogle Scholar
  251. Zhang, P., Johnson, W. P., Piana, M. J., Fuller, C. C., & Naftz, D. L. (2001a). Potential artifacts in interpretation of differential breakthrough of colloids and dissolved tracers in the context of transport in a zero-valent iron permeable reactive barrier. Groundwater, 39, 831–840.CrossRefGoogle Scholar
  252. Zhang, P., Johnson, W. P., Scheibe, T. D., Choi, K. H., Dobbs, F. C., & Mailloux, B. J. (2001b). Extended tailing of bacteria following breakthrough at the Narrow Channel Focus Area, Oyster, Virginia. Water Resources Research, 37, 2687–2698.CrossRefGoogle Scholar
  253. Zhang, W., Jianzhi, N., Morales, V. L., Chen, X., Hay, A. G., Lehmann, J., & Steenhuis, T. S. (2010). Transport and retention of biochar particles in porous media: Effect of pH, ionic strength, and particle size. Ecohydrology, 3, 497–508.CrossRefGoogle Scholar
  254. Zheng, C., & Wang, P. (1999a). MT3DMS, A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. U.S. Army Corpes Engineers, Engineer Research and Development Center, Contract Report SERDP-99-1, Vicksburg, MS, 202.Google Scholar
  255. Zheng, C., & Wang, P. P. (1999b). A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. US Army Engineer Research and Development Center Contract Report SERDP-99-1, Vicksburg, Mississippi, USA.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Tanapon Phenrat
    • 1
    • 2
  • Peyman Babakhani
    • 3
    • 4
  • Jonathan Bridge
    • 4
  • Ruey-an Doong
    • 3
    • 5
  • Gregory V. Lowry
    • 6
    • 7
  1. 1.Department of Civil Engineering, Environmental Engineering ProgramNaresuan UniversityPhitsanulokThailand
  2. 2.Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of EngineeringNaresuan UniversityPhitsanulokThailand
  3. 3.Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu CityTaiwan
  4. 4.Department of the Natural and Built EnvironmentSheffield Hallam UniversitySheffieldUK
  5. 5.Institute of Environmental EngineeringNational Chiao Tung UniversityHsinchu CityTaiwan
  6. 6.Center for Environmental Implications of Nanotechnology (CEINT)DurhamUSA
  7. 7.Department of Civil & Environmental EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations