Advertisement

Carbothermal Synthesis of Aerosol-Based Iron-Carbon Nanocomposites for Adsorption and Reduction of Cr(VI)

  • Jiawei He
  • Ling Ai
  • Yiyan Wang
  • Yuan Long
  • Chaoliang Wei
  • Jingjing ZhanEmail author
Chapter

Abstract

Spherical iron-carbon nanocomposites were synthesized through a facile aerosol-based process and a subsequent carbothermal reduction. Carbothermal treatment reduces iron species to zero-valent iron rather than using expensive sodium borohydride. In addition, the high porosity of iron-carbon composites allows the entry of contaminants to reactive sites. These composites with nanoscale zero-valent iron particles incorporated in the carbon matrix exhibit synergistic adsorption and reaction for more efficient removal of Cr(VI) in water. Under identical experimental conditions, aerosol-assisted iron-carbon composites showed the highest removal efficiency compared to other materials including nanoscale zero-valent iron particles, aerosol-assisted carbon, and their physical mixture. Meanwhile, X-ray photoelectron spectroscopy analysis proved as-prepared iron-carbon composites could effectively transform Cr(VI) to much less toxic Cr(III). These iron-carbon composites can be designed at low cost, the process is amenable to scale-up for in situ application, and the materials are intrinsically benign to the environment.

Keywords

Iron-carbon nanocomposite Adsorption Reduction Hexavalent chromium Aerosol-based synthesis 

Notes

Acknowledgements

We wish to thank Dr. Yanqiang Huang at Dalian Institute of Chemical Physics for his assistance with the XPS analysis. Funding from the Fundamental Research Funds for the Central Universities is gratefully acknowledged.

References

  1. Al-abed, S. R., & Chen, J. (2001). Transport of trichloroethylene (TCE) in natural soil by electroosmosis. In: Smith, J. A. & Burns, S. E. (eds.), Physicochemical groundwater remediation (pp. 91–114). New York: Springer.Google Scholar
  2. Cao, J., & Zhang, W. (2006). Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. Journal of Hazardous Materials, 132(2–3), 213–219.CrossRefGoogle Scholar
  3. Choi, H., Al-Abed, S. R., Agarwal, S., & Dionysiou, D. D. (2008). Synthesis of reactive Nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials, 20, 3649–3655.CrossRefGoogle Scholar
  4. Choi, H., Agarwal, S., & Al-Abed, S. R. (2009). Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept. Environmental Science & Technology, 43, 488–493.CrossRefGoogle Scholar
  5. Gatmiri, B., & Hosseini, A. H. (2004). Conceptual model and mathematical formulation of NAPL transport in unsaturated porous media. In: Thomas, H. R. & Young, R. N. (eds.), Geoenvironmental engineering: Integrated management of groundwater and contaminated land (pp. 67–75). London, UK: Thomas Telford Publishing.CrossRefGoogle Scholar
  6. He, F., & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 39, 3314–3320.CrossRefGoogle Scholar
  7. He, F., & Zhao, D. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 41, 6216–6221.CrossRefGoogle Scholar
  8. He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe−Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 46, 29–34.CrossRefGoogle Scholar
  9. Hoch, L. B., Mack, E. J., Hydutsky, B. W., Hershman, J. M., Skluzacek, J. M., & Mallouk, T. E. (2008). Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental Science & Technology, 47, 2600–2605.CrossRefGoogle Scholar
  10. Huang, P., Ye, Z., Xie, W., Chen, Q., Li, J., Xu, Z., & Yao, M. (2013). Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI). Water Research, 47, 4050–4058.CrossRefGoogle Scholar
  11. Krishnani, K., & Ayyappan, S. (2006). Heavy metals remediation of water using plants and lignocellulosic agrowastes. In: Ware, G. W., Whitacre, D. M., Albert, L. A., de Voogt, P., Gerba, C. P., Hutzinger, O., Knaak, J. B., Mayer, F. L., Morgan, D. P., Park, D. L., Tjeerdema, R. S., Yang, R. S. H., Gunther, F. A. (eds.), Reviews of environmental contamination and toxicology (Vol. 188, pp. 59–84).CrossRefGoogle Scholar
  12. Li, X., Cao, J., & Zhang, W. (2008). Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Industrial & Engineering Chemistry Research, 47, 2131–2139.CrossRefGoogle Scholar
  13. Liu, Y., Choi, H., Dionysiou, D., & Lowry, G. V. (2005a). Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 17, 5315–5322.CrossRefGoogle Scholar
  14. Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005b). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39, 1338–1345.CrossRefGoogle Scholar
  15. Liu, Z., Fan, T., Zhang, W., & Zhang, D. (2005c). The synthesis of hierarchical porous iron oxide with wood templates. Microporous and Mesoporous Materials, 85, 82–88.CrossRefGoogle Scholar
  16. Lv, X., Xu, J., Jiang, G., & Xu, X. (2011). Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere, 85, 1204–1209.CrossRefGoogle Scholar
  17. Miretzky, P., & Cirelli, A. F. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. Journal of Hazardous Materials, 180, 1–19.CrossRefGoogle Scholar
  18. Nyer, E. K., & Vance, D. B. (2001). Nano-scale iron for dehalogenation. Groundwater Monitoring & Remediation, 21, 41–46.CrossRefGoogle Scholar
  19. Owlad, M., Aroua, M. K., Daud, W. A. W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: A review. Water, Air, and Soil Pollution, 200, 59–77.CrossRefGoogle Scholar
  20. Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284–290.CrossRefGoogle Scholar
  21. Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environmental Science & Technology, 43, 1507–1514.CrossRefGoogle Scholar
  22. Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5, 2489–2494.CrossRefGoogle Scholar
  23. Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16, 2187–2193.CrossRefGoogle Scholar
  24. Seaton, N. A. (1991). Determination of the connectivity of porous solids from nitrogen sorption measurements. Chemical Engineering Science, 46, 1895–1909.CrossRefGoogle Scholar
  25. Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure and Applied Chemistry, 57, 603–619.CrossRefGoogle Scholar
  26. Sunkara, B., Zhan, J., He, J., McPherson, G. L., Piringer, G., & John, V. T. (2010). Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons. ACS Applied Materials & Interfaces, 2, 2854–2862.CrossRefGoogle Scholar
  27. Tang, L., Yang, G., Zeng, G., Cai, Y., Li, S., Zhou, Y., Pang, Y., Liu, Y., Zhang, Y., & Luna, B. (2014). Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chemical Engineering Journal, 239, 114–122.CrossRefGoogle Scholar
  28. Tiraferri, A., Chen, K., Sethi, R., & Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324, 71–79.CrossRefGoogle Scholar
  29. Uegami M., Kawano J., Okita T., Fujii Y., Okinaka K., Kayuka K., & Yatagi S. (2006). Iron particles for purifying contaminated soil or groundwater. US Patent 7,022,256, Apr. 4, 2006.Google Scholar
  30. Wang, C., & Zhang, W. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31, 2154–2156.CrossRefGoogle Scholar
  31. Xie, Y., & Cwiertny, D. M. (2012). Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity: Time scales and mechanisms of reactivity loss toward 1,1,1,2-tetrachloroethane and Cr(VI). Environmental Science & Technology, 46, 8365–8373.CrossRefGoogle Scholar
  32. Zhan, J., Zheng, T., Piringer, G., Day, C., McPherson, G. L., Lu, Y., Papadopoulos, K., & John, V. T. (2008). Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 42, 8871–8876.CrossRefGoogle Scholar
  33. Zhan, J., Sunkara, B., Le, L., John, V. T., He, J., McPherson, G. L., Piringer, G., & Lu, Y. (2009). Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 43, 8616–8621.CrossRefGoogle Scholar
  34. Zhan, J., Kolesnichenko, I., Sunkara, B., He, J., McPherson, G. L., Piringer, G., & John, V. T. (2011). Multifunctional iron−carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 45(5), 1949–1954.CrossRefGoogle Scholar
  35. Zhang, W. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323–332.CrossRefGoogle Scholar
  36. Zheng, T., Zhan, J., He, J., Day, C., Lu, Y., McPherson, G. L., Piringer, G., & John, V. T. (2008). Reactivity characteristics of nanoscale zerovalent iron−silica composites for trichloroethylene remediation. Environmental Science & Technology, 42, 4494–4499.CrossRefGoogle Scholar
  37. Zhou, X,. Lv, B., Zhou, Z., Li, W., & Jing, G. (2015). Evaluation of highly active nanoscale zero-valent iron coupled with ultrasound for chromium(VI) removal. Chemical Engineering Journal, 281, 155–163.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jiawei He
    • 1
  • Ling Ai
    • 1
  • Yiyan Wang
    • 1
  • Yuan Long
    • 1
  • Chaoliang Wei
    • 1
  • Jingjing Zhan
    • 1
    Email author
  1. 1.School of Food and EnvironmentDalian University of TechnologyPanjinPeople’s Republic of China

Personalised recommendations