Advertisement

Vadose Zone Remediation of Dense Nonaqueous Phase Liquid Residuals Using Foam-Based Nanoscale Zerovalent Iron Particles with Low-Frequency Electromagnetic Field

  • Tanapon Phenrat
  • Gregory V. Lowry
Chapter

Abstract

This chapter presents a novel combined remedy using foam-based NZVI (F-NZVI) for vadose zone remediation of volatile organic compound (VOC) contamination. Conceptually, F-NZVI serves two remedial actions. First, F-NZVI can flush the VOC or nonaqueous phase liquid (NAPL) from the soil. Second, in addition to flushing NAPL from the soil, the NZVI that is deposited on the soil grain, if electromagnetically induced by a low-frequency (LF) electromagnetic field (EMF) (Chap.  11), should generate heat and speed up VOC removal in the vadose zone via thermally enhanced volatilization when used with soil vapor extraction (SVE). This chapter reviews the use of various surfactants to produce foam and F-NZVI for soil flushing. Moreover, characterization and transport experiments of foam and F-NZVI in unsaturated porous media demonstrate the thermally enhanced evaporation of VOCs using F-NZVI and LF EMF (up to 40 times enhanced evaporation of trichloroethylene). The feasibility of this novel approach is compared with a thermally enhanced SVE using radio-frequency heating (RFH) without F-NZVI. The chapter points out that using F-NZVI with LF EMF could theoretically be an alternative to RFH because it does not require as high of an irradiation frequency as RFH and should lead to lower capital and operational costs versus RFH.

Keywords

Nanoscale Zerovalent Iron Vadose Zone Foam Thermal Enhanced Soil Vapor Extraction Combined Remedies with NZVI Electromagnetic Low Frequency Electromagnetic Induction Heating 

Notes

Acknowledgments

The authors are thankful for the research funding from (1) the Thailand Research Fund (TRF) (MRG5680129); (2) the National Nanotechnology Center (Thailand), a member of the National Science and Technology Development Agency, through grant number P-11-00989; and (3) the National Research Council (R2556B070).

References

  1. Abreu, L. D. V., & Johnson, P. C. (2005). Effect of vapor source−building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model. Environmental Science & Technology, 39(12), 4550–4561.CrossRefGoogle Scholar
  2. Babakhani, P., Fagerlund, F., Shamsai, A., Lowry, G. V., & Phenrat, T. (2015). Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe0 nanoparticles in saturated porous media. Environmental Science and Pollution Research, 25(8), 7180–7199.CrossRefGoogle Scholar
  3. Bañobre-López, M., Teijeiro, A., & Rivas, J. (2013). Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology and Radiotherapy, 18(6), 397–400.CrossRefGoogle Scholar
  4. Barbee, G. C. (2007). Fate of chlorinated aliphatic hydrocarbons in the vadose zone and ground water. Ground Water Monitoring and Remediation, 14(1), 129–140.CrossRefGoogle Scholar
  5. Bardos, P., Bone, B., Černík, M., Elliott, D. W., Jones, S., & Merly, C. (2015). Nanoremediation and international environmental restoration markets. Remediation Journal, 25(2), 83–94.CrossRefGoogle Scholar
  6. Bera, A., & Babadagli, T. (2015). Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review. Applied Energy, 151, 206–226.CrossRefGoogle Scholar
  7. Beyke, G., & Fleming, D. (2005). In situ thermal remediation of DNAPL and LNAPL using electrical resistance heating. Remediation Journal, Summer, 5–22.CrossRefGoogle Scholar
  8. Bientinesi, M., Scali, C., & Petarca, L. (2015). Radio frequency heating for oil recovery and soil remediation (pp. 1199–1204). Whistler, BC, Canada: The International Federation of Automatic Control.Google Scholar
  9. Binks, B. P., Kirkland, M., & Rodrigues, J. A. (2008). Origin of stabilisation of aqueous foams in nanoparticle–surfactant mixtures. Soft Matter, 4, 2373–2382.CrossRefGoogle Scholar
  10. Boulding, J. R., & Ginn, J. S. (2003). Practical handbook of soil, vadose zone, and ground-water contamination: Assessment, prevention, and remediation. New York: CRC Press.Google Scholar
  11. Brusseau, M. L., Carroll, K. C., Truex, M. J., & Becker, D. J. (2013). Characterization and remediation of chlorinated volatile organic contaminants in the vadose zone. Vadose Zone Journal, 12(4). https://doi.org/10.2136/vzj2012.0137.CrossRefGoogle Scholar
  12. Chen, M. Y., Su, Y. F., & Shih, Y. H. (2014). Effect of geochemical properties on degradation of trichloroethylene by stabilized zerovalent iron nanoparticle with Na-acrylic copolymer. Journal of Environmental Management, 144, 88–92.CrossRefGoogle Scholar
  13. Ding, Y., Liu, B., Shen, X., Zhong, L., & Li, X. (2013). Foam-assisted delivery of nanoscale zero valent iron in porous media. Journal of Environmental Engineering, 139(9), 1206–1212.CrossRefGoogle Scholar
  14. Fagerlund, F., Illanagasekare, T., & Niemi, A. (2007a). Nonaqueous-phase liquid infiltration and immobilization in heterogeneous media: 2. Application to stochastically heterogeneous formations. Vadose Zone Journal, 6(3), 483–495.CrossRefGoogle Scholar
  15. Fagerlund, F., Illangasekare, T., & Niemi, A. (2007b). Nonaqueous-phase liquid infiltration and immobilization in heterogeneous media: 1. Experimental methods and two-layered reference case. Vadose Zone Journal, 6(3), 471–482.CrossRefGoogle Scholar
  16. Fagerlund, F., Illangasekare, T. H., Phenrat, T., Kim, H.-J., & Lowry, G. V. (2012). PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Journal of Contaminant Hydrology, 131(1–4), 9–28.CrossRefGoogle Scholar
  17. Falciglia, P. P., Urso, G., & Vagliasindi, F. G. A. (2013). Microwave heating remediation of soils contaminated with diesel fuel. Journal of Soils and Sediments, 13, 1396–1407.CrossRefGoogle Scholar
  18. Gavaskar, A., Bhargava, M., & Condit, W. (2007). Cost and performance review of Electrical Resistance Heating (ERH) for source treatment (p. 121). Port Hueneme, CA: Naval Facilities Engineering Service Center.CrossRefGoogle Scholar
  19. Heron, G., Van Zutphen, M., Christensen, T. H., & Enfield, G. C. (1998). Soil heating for enhanced remediation of chlorinated solvents: A laboratory study on resistive heating and vapor extraction in a silty, low-permeable soil contaminated with trichloroethylene. Environmental Science & Technology, 32(10), 1474–1481.CrossRefGoogle Scholar
  20. Hirasaki, G. J., Miller, C. A., Szafranski, R., Lawson, J. B., Tanzil, D., Jackson, R. E., Londergan, J., & Meinardus, H. (1997). Field demonstration of the surfactant/foam process for aquifer remediation (p. SPE 39393). San Antonio, TX: Society of Petroleum Engineers. https://www.onepetro.org/conference-paper/SPE-39292-MS
  21. Huang, C.-W., & Chang, C.-H. (2000). A laboratory study on foam-enhanced surfactant solution flooding in removing n-pentadecane from contaminated columns. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 173(1–3), 171–179.CrossRefGoogle Scholar
  22. Jackson, P. D., Williams, J. F., Lovell, M. A., Camps, A., Rochelle, C., & Milodowski, A. E. (2008). An investigation of the exponent in Archie’s equation: Comparing numerical modeling with laboratory data: Towards characterising disturbed samples from the Cascadia margin:- Iodp expedition 311 (pp. 1–11). Austin, TX: Society of Petrophysicists and Well-Log Analysts.Google Scholar
  23. Jeong, S.-W., Corapcioglu, M. Y., & Roosevelt, E. W. (2000). Micromodel study of surfactant foam remediation of residual trichloroethylene. Environmental Science & Technology, 34(16), 3456–3461.CrossRefGoogle Scholar
  24. Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 117(12), 1823–1831.CrossRefGoogle Scholar
  25. Khristov, K., Exerowa, D., & Minkov, G. (2002). Critical capillary pressure for destruction of single foam films and foam: Effect of foam film size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 210, 159–166.CrossRefGoogle Scholar
  26. Kilbane, J. J., II, Chowdiah, P., Kayser, K. J., Misra, B., Jackowski, K. A., Srivastava, V. J., Sethu, G. N., Nikolov, A. D., Wasan, D. T., & Hayes, T. D. (1997). Remediation of contaminated soils using foams. Land Contamination & Reclamation, 5, 41–54.Google Scholar
  27. Kommalapati, R. R., Valsaraj, K. T., Constant, W. D., & Roy, D. (1998). Soil flushing using colloid gas Aphron suspensions generated from a plant-based surfactant. Journal of Hazardous Materials, 60, 73–87.CrossRefGoogle Scholar
  28. Li, Z., Kawashita, M., Araki, N., Mitsumori, M., Hiraoka, M., & Doi, M. (2010). Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer. Materials Science and Engineering: C, 30(7), 990–996.CrossRefGoogle Scholar
  29. Lim, J. K., Tilton, R. D., Eggman, A., & Majetich, S. A. (2007). Design and synthesis of plasmonic magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 311, 78–83.CrossRefGoogle Scholar
  30. Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 41(22), 7881–7887.CrossRefGoogle Scholar
  31. Lowe, D. F., Oubre, C. L., & Ward, C. H. (1999). Soil vapor extraction using radio frequency heating: Resource manual and technology demonstration. New York: CRC Press.Google Scholar
  32. Lv, Q., Li, Z., Li, B., Li, S., & Sun, Q. (2015). Study of nanoparticle–surfactant-stabilized foam as a fracturing fluid. Industrial and Engineering Chemistry Research, 54(38), 9468–9477.CrossRefGoogle Scholar
  33. Lv, C., Chen, J., & Wang, X. (2017). Evaluation of surfactant performance in in situ foam flushing for remediation of dichlorodiphenyltrichloroethane-contaminated soil. International journal of Environmental Science and Technology, 14, 631–638.CrossRefGoogle Scholar
  34. Maire, J., & Fatin-Rouge, N. (2017). Surfactant foam flushing for in situ removal of DNAPLs in shallow soils. Journal of Hazardous Materials, 321, 247–255.CrossRefGoogle Scholar
  35. Mueller, N. C., Braun, J., Bruns, J., Černík, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19, 550–558.CrossRefGoogle Scholar
  36. Mulligan, C. N., & Eftekhari, F. (2003). Remediation with surfactant foam of PCP-contaminated soil. Engineering Geology, 70(3–4), 269–279.CrossRefGoogle Scholar
  37. Nakamura, T., Senior, C. L., Burns, E. G., & Bell, M. D. (2000). Solar-powered soil vapor extraction for removal of dense nonaqueous phase organics from soil. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 35(6), 795–816.CrossRefGoogle Scholar
  38. Pablico-Lansigan, M. H., Situa, S. F., & Samia, A. C. S. (2013). Magnetic particle imaging: Advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale, 5, 4040–4055.CrossRefGoogle Scholar
  39. Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environmental Science & Technology, 43(5), 1507–1514.CrossRefGoogle Scholar
  40. Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010a). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118(3–4), 152–164.CrossRefGoogle Scholar
  41. Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010b). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118(3–4), 152–164.CrossRefGoogle Scholar
  42. Phenrat, T., Song, J. E., Cisneros, C. M., Schoenfelder, D. P., Tilton, R. D., & Lowry, G. V. (2010c). Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: Development of an empirical model. Environmental Science & Technology, 44(12), 4531–4538.CrossRefGoogle Scholar
  43. Phenrat, T., Fagerlund, F., Illanagasekare, T., Lowry, G. V., & Tilton, R. D. (2011). Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45(14), 6102–6109.CrossRefGoogle Scholar
  44. Phenrat, T., Schoenfelder, D., Kirschling, T. L., Tilton, R. D., & Lowry, G. V. (2018). Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environmental Science & Pollution Research, 25(8), 7157–7169.CrossRefGoogle Scholar
  45. Poppendieck, D. G., Loehr, R. C., & Webster, M. T. (1999a). Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems. 1. Laboratory studies. Journal of Hazardous Materials, 69(1), 81–93.CrossRefGoogle Scholar
  46. Poppendieck, D. G., Loehr, R. C., & Webster, M. T. (1999b). Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems: 2. Field study. Journal of Hazardous Materials, 69(11), 95–109.CrossRefGoogle Scholar
  47. Price, S. L., Kasevich, R. S., Johnson, M. A., Wiberg, D., & Marley, M. C. (1999). Radio frequency heating for soil remediation. Journal of the Air & Waste Management Association, 49(2), 136–145.CrossRefGoogle Scholar
  48. Revil, A. (2013). Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1GHz. Water Resources Research, 49, 306–327.CrossRefGoogle Scholar
  49. Rizzoni, G. (2004). Principles and applications of electrical engineering. New York: McGraw-Hill Inc.Google Scholar
  50. Roland, U., Buchenhorst, D., Holzer, F., & Kopinke, F. D. (2008). Engineering aspects of radio-wave heating for soil remediation and compatibility with biodegradation. Environmental Science & Technology, 42(4), 1232–1237.CrossRefGoogle Scholar
  51. Ronen, D., Graber, E. R., & Laor, Y. (2004). Volatile organic compounds in the saturated–unsaturated Interface region of a contaminated phreatic aquifer. Vadose Zone Journal, 4(2), 337–344.CrossRefGoogle Scholar
  52. Rothmel, R. K., Peters, R. W., St. Martin, E., & DeFlaun, M. F. (1998). Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs. Environmental Science & Technology, 32, 1667–1675.CrossRefGoogle Scholar
  53. Saiers, J. E., & Lenhart, J. J. (2003). Colloid mobilization and transport within unsaturated porous media under transient-flow conditions. Water Resources Research, 39(1), 1019.CrossRefGoogle Scholar
  54. Sakulchaicharoen, N., O’Carroll, D. M., & Herrera, J. E. (2010). Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. Journal of Contaminant Hydrology, 118(3–4), 117–127.CrossRefGoogle Scholar
  55. Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5(12), 2489–2494.CrossRefGoogle Scholar
  56. Shen, X., Zhao, L., Ding, Y., Liu, B., Zeng, H., Zhong, L., & Li, X. (2011). Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. Journal of Hazardous Materials, 186(2–3), 1773–1780.CrossRefGoogle Scholar
  57. Smith, L. A., & Hinchee, R. E. (1993). In situ thermal technologies for site remediation. Boca Raton: CRC Press.Google Scholar
  58. Srirattana, S., Piaowan, K., Lowry, G. V., & Phenrat, T. (2017). Electromagnetic induction of foam-based nanoscale Zerovalent Iron (NZVI) particles to thermally enhance non-aqueous phase liquid (NAPL) volatilization in unsaturated porous media: Proof of concept. Chemosphere, 183, 323–331.CrossRefGoogle Scholar
  59. Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1(2), 44–48.CrossRefGoogle Scholar
  60. Truex, M. J., Gillie, J. M., Powers, J. G., & Lynch, K. P. (2009). Assessment of in situ thermal treatment for chlorinated organic source zones. Remediation Journal, 19(2), 7–17.CrossRefGoogle Scholar
  61. Vermeulen, F., & McGee, B. (2000). In-situ electromagnetic heating for hydrocarbon recovery and environmental remediation. Journal of Canadian Petroleum Technology, 39(8), 25–29.CrossRefGoogle Scholar
  62. Wang, H., & Chen, J. (2012). Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: Effect of partition coefficient and sweep efficiency. Journal of Environmental Sciences (China), 24(7), 1270–1277.CrossRefGoogle Scholar
  63. Wang, X., Chen, J., & Lv, C. (2015). Evaluation of foam surfactant for foam-flushing technique in remediation of DDT-contaminated soil using data envelopment analysis method. Environmental Science and Pollution Research, 22(4), 2994–3003.CrossRefGoogle Scholar
  64. Wei, Y. T., Wu, S. C., Yang, S. W., Che, C. H., Lien, H. L., & Huang, D. H. (2012). Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. Journal of Hazardous Materials, 211–212, 373–380.CrossRefGoogle Scholar
  65. Werth, C. J., & Reinhard, M. (1997). Effects of temperature on trichloroethylene desorption from silica gel and natural sediments. 2. Kinetics. Environmental Science & Technology, 31, 697–703.CrossRefGoogle Scholar
  66. Yang, J.-W., Cho, H.-J., Choi, G.-Y., & Lee, S.-H. (2001). Cost-effective monitoring for a soil vapor extraction (SVE) system. A simplified modeling and gas sensor test. Environmental Monitoring and Assessment, 70(1), 201–210.CrossRefGoogle Scholar
  67. Yoon, H., Valocchi, A. J., & Werth, C. J. (2003). Modeling the influence of water content on soil vapor extraction. Vadose Zone Journal, 2, 368–381.CrossRefGoogle Scholar
  68. Zhang, W. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323–332.CrossRefGoogle Scholar
  69. Zhang, W.-X., Wang, C.-B., & Lien, H.-L. (1998). Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40, 387–395.CrossRefGoogle Scholar
  70. Zhao, Y. S., Su, Y., Lian, J. R., Wang, H. F., Li, L. L., & Qin, C. Y. (2016). Insights on flow behavior of foam in unsaturated porous media during soil Flushing. Water Environment Research, 88(11), 2132–2141.CrossRefGoogle Scholar
  71. Zhong, L., Szecsody, J. E., Zhang, F., & Mattigod, S. V. (2010). Foam delivery of amendments for vadose zone remediation: Propagation performance in unsaturated sediments. Vadose Zone Journal, 9, 757–767.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Tanapon Phenrat
    • 1
    • 2
  • Gregory V. Lowry
    • 3
    • 4
  1. 1.Department of Civil Engineering, Environmental Engineering ProgramNaresuan UniversityPhitsanulokThailand
  2. 2.Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of Engineering, Naresuan UniversityPhitsanulokThailand
  3. 3.Center for Environmental Implications of Nanotechnology (CEINT)DurhamUSA
  4. 4.Department of Civil & Environmental EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations