Improving the Reactivity of ZVI and NZVI Toward Various Metals and Metal(loid)s with Weak Magnetic Field

  • Jinxiang Li
  • Yuankui Sun
  • Liping Liang
  • Xiaohong GuanEmail author


This chapter provides an overview of employing weak magnetic field (WMF) and premagnetization to improve the reactivity of ZVI toward various metal(loid)s. The rate constants of metal(loid)s sequestration by ZVI were increased by 1.1–383.7- and 1.2–12.2-fold due to the application of WMF and premagnetization, respectively. The mechanisms of WMF-induced improvement in contaminant sequestration by ZVI are also summarized. Finally, this chapter identifies the current knowledge gaps and future research needs of WMF/ZVI system for environmental application.


Nanoscale Zerovalent Iron Zerovalent Iron Weak Magnetic Field Metals Metalloids Sequestration 


  1. Agrawal, A., & Tratnyek, P. G. (1996). Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental Science & Technology, 30(1), 153–160.CrossRefGoogle Scholar
  2. Ansaf, K. V. K., Ambika, S., & Nambi, I. M. (2016). Performance enhancement of zero valent iron based systems using depassivators: Optimization and kinetic mechanisms. Water Research, 102, 436–444.CrossRefGoogle Scholar
  3. Aziz, F., Pandey, P., Chandra, M., Khare, A., Rana, D. S., & Mavani, K. R. (2014). Surface morphology, ferromagnetic domains and magnetic anisotropy in BaFeO3−δ thin films: Correlated structure and magnetism. Journal of Magnetism and Magnetic Materials, 356(0), 98–102.CrossRefGoogle Scholar
  4. Bataineh, H., Pestovsky, O., & Bakac, A. (2012). pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chemical Science, 3(5), 1594–1599.CrossRefGoogle Scholar
  5. Chen, L., Jin, S., Fallgren, P. H., Swoboda-Colberg, N. G., Liu, F., & Colberg, P. J. S. (2012). Electrochemical depassivation of zero-valent iron for trichloroethene reduction. Journal of Hazardous Materials, 239–240(0), 265–269.CrossRefGoogle Scholar
  6. Dai, C. M., Zhou, Z., Zhou, X. F., & Zhang, Y. L. (2014). Removal of Sb(III) and Sb(V) from aqueous solutions using nZVI. Water, Air, and Soil Pollution, 225(1), 12.CrossRefGoogle Scholar
  7. Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37(18), 4182–4189.CrossRefGoogle Scholar
  8. Dorjee, P., Arnarasiriwardena, D., & Xing, B. S. (2014). Antimony adsorption by zero-valent iron nanoparticles (nZVI): Ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) study. Microchemical Journal, 116, 15–23.CrossRefGoogle Scholar
  9. Feng, P., Guan, X. H., Sun, Y. K., Choi, W. Y., Qin, H. J., Wang, J. M., Qiao, J. L., & Li, L. N. (2015). Weak magnetic field accelerates chromate removal by zero-valent iron. Journal of Environmental Sciences (China), 31, 175–183.CrossRefGoogle Scholar
  10. Fujiwara, M., Mitsuda, K., & Tanimoto, Y. (2006). Movement and diffusion of paramagnetic ions in a magnetic field. Journal of Physical Chemistry B, 110(28), 13965–13969.CrossRefGoogle Scholar
  11. Furukawa, Y., Kim, J. W., Watkins, J., & Wilkin, R. T. (2002). Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science & Technology, 36(24), 5469–5475.CrossRefGoogle Scholar
  12. Geiger, C. L., Ruiz, N. E., Clausen, C. A., Reinhart, D. R., & Quinn, J. W. (2002). Ultrasound pretreatment of elemental iron: Kinetic studies of dehalogenation reaction enhancement and surface effects. Water Research, 36, 1342–1350.CrossRefGoogle Scholar
  13. Gheju, M. (2011). Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water, Air, and Soil Pollution, 222(1-4), 103–148.CrossRefGoogle Scholar
  14. Ghosh, N., Mandal, B. K., & Mohan Kumar, K. (2012). Magnetic memory effect in chelated zero valent iron nanoparticles. Journal of Magnetism and Magnetic Materials, 324(22), 3839–3841.CrossRefGoogle Scholar
  15. Gillham, R. W., & Ohannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 32(6), 958–967.CrossRefGoogle Scholar
  16. Guan, X. H., Du, J. S., Meng, X. G., Sun, Y. K., Sun, B., & Hu, Q. H. (2012). Application of titanium dioxide in arsenic removal from water: A review. Journal of Hazardous Materials, 215, 1–16.CrossRefGoogle Scholar
  17. Guan, X., Jiang, X., Qiao, J., & Zhou, G. (2015a). Decomplexation and subsequent reductive removal of EDTA-chelated CuII by zero-valent iron coupled with a weak magnetic field: Performances and mechanisms. Journal of Hazardous Materials, 300, 688–694.CrossRefGoogle Scholar
  18. Guan, X. H., Sun, Y. K., Qin, H. J., Li, J. X., Lo, I. M., He, D., & Dong, H. R. (2015b). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014). Water Research, 75, 224–248.CrossRefGoogle Scholar
  19. Guo, X. J., Wu, Z. J., He, M. C., Meng, X. G., Jin, X., Qiu, N., & Zhang, J. (2014). Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure. Journal of Hazardous Materials, 276, 339–345.CrossRefGoogle Scholar
  20. Guo, X., Yang, Z., Dong, H., Guan, X., Ren, Q., Lv, X., & Jin, X. (2016). Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water. Water Research, 88, 671–680.CrossRefGoogle Scholar
  21. Hug, S. J., & Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environmental Science & Technology, 37(12), 2734–2742.CrossRefGoogle Scholar
  22. Hung, H. M., & Hoffmann, M. R. (1998). Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound. Environmental Science & Technology, 32(19), 3011–3016.CrossRefGoogle Scholar
  23. Jiang, X., Qiao, J., Lo, I. M. C., Wang, L., Guan, X., Lu, Z., Zhou, G., & Xu, C. (2015). Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zero valent iron. Journal of Hazardous Materials, 283(0), 880–887.CrossRefGoogle Scholar
  24. Johnson, T. L., Scherer, M. M., & Tratnyek, P. G. (1996). Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology, 30(8), 2634–2640.CrossRefGoogle Scholar
  25. Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2008). pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science & Technology, 42(19), 7424–7430.CrossRefGoogle Scholar
  26. Katsoyiannis, I. A., Ruettimann, T., & Hug, S. I. (2009a). Response to comment on “pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water”. Environmental Science & Technology, 43(10), 3980–3981.CrossRefGoogle Scholar
  27. Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2009b). Response to comment on “pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zerovalent iron in aerated water”. Environmental Science & Technology, 43(1), 234–234.CrossRefGoogle Scholar
  28. Lai, K. C. K., & Lo, I. M. C. (2008). Removal of chromium (VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environmental Science and Technology, 42(4), 1238–1244.CrossRefGoogle Scholar
  29. Lee, C., & Sedlak, D. L. (2008). Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen. Environmental Science & Technology, 42(22), 8528–8533.CrossRefGoogle Scholar
  30. Lee, J., Kim, J., & Choi, W. (2007). Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle. Environmental Science & Technology, 41(9), 3335–3340.CrossRefGoogle Scholar
  31. Leuz, A. K., Monch, H., & Johnson, C. A. (2006). Sorption of Sb(III) and Sb(V) to goethite: Influence on Sb(III) oxidation and mobilization. Environmental Science & Technology, 40(23), 7277–7282.CrossRefGoogle Scholar
  32. Li, J., Bao, H., Xiong, X., Sun, Y., & Guan, X. (2015a). Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field. Separation and Purification Technology, 151, 276–283.CrossRefGoogle Scholar
  33. Li, J., Qin, H., & Guan, X. (2015b). Premagnetization for enhancing the reactivity of multiple zerovalent iron samples toward various contaminants. Environmental Science & Technology, 49(24), 14401–14408.CrossRefGoogle Scholar
  34. Li, J. X., Shi, Z., Ma, B., Zhang, P. P., Jiang, X., Xiao, Z. J., & Guan, X. H. (2015c). Improving the reactivity of zerovalent iron by taking advantage of its magnetic memory: Implications for arsenite removal. Environmental Science & Technology, 49(17), 10581–10588.CrossRefGoogle Scholar
  35. Liang, L., Yang, W., Guan, X., Li, J., Xu, Z., Wu, J., Huang, Y., & Zhang, X. (2013). Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron. Water Research, 47(15), 5846–5855.CrossRefGoogle Scholar
  36. Liang, L., Sun, W., Guan, X., Huang, Y., Choi, W., Bao, H., Li, L., & Jiang, Z. (2014a). Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron. Water Research, 49, 371–380.CrossRefGoogle Scholar
  37. Liang, L. P., Guan, X. H., Shi, Z., Li, J. L., Wu, Y. N., & Tratnyek, P. G. (2014b). Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron. Environmental Science & Technology, 48(11), 6326–6334.CrossRefGoogle Scholar
  38. Liang, L., Guan, X., Huang, Y., Ma, J., Sun, X., Qiao, J., & Zhou, G. (2015). Efficient selenate removal by zero-valent iron in the presence of weak magnetic field. Separation and Purification Technology, 156(Part 3), 1064–1072.CrossRefGoogle Scholar
  39. Lin, C. J., & Lo, S. L. (2005). Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system. Water Research, 39(6), 1037–1046.CrossRefGoogle Scholar
  40. Lioubashevski, O., Katz, E., & Willner, I. (2004). Magnetic field effects on electrochemical processes: A theoretical hydrodynamic model. Journal of Physical Chemistry B, 108(18), 5778–5784.CrossRefGoogle Scholar
  41. Liu, H., Li, G., Qu, J., & Liu, H. (2007). Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound. Journal of Hazardous Materials, 144(1-2), 180–186.CrossRefGoogle Scholar
  42. Lu, X., Li, M., Tang, C., Feng, C., & Liu, X. (2012). Electrochemical depassivation for recovering Fe0 reactivity by Cr(VI) removal with a permeable reactive barrier system. Journal of Hazardous Materials, 213–214(0), 355–360.CrossRefGoogle Scholar
  43. Mackenzie, P. D., Horney, D. P., & Sivavec, T. M. (1999). Mineral precipitation and porosity losses in granular iron columns. Journal of Hazardous Materials, 68(1-2), 1–17.CrossRefGoogle Scholar
  44. Manning, B. A., Hunt, M. L., Amrhein, C., & Yarmoff, J. A. (2002). Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environmental Science & Technology, 36(24), 5455–5461.CrossRefGoogle Scholar
  45. Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 28(12), 2045–2053.CrossRefGoogle Scholar
  46. Miehr, R., Tratnyek, P. G., Bandstra, J. Z., Scherer, M. M., Alowitz, M. J., & Bylaska, E. J. (2004). Diversity of contaminant reduction reactions by zerovalent iron: Role of the reductate. Environmental Science & Technology, 38(1), 139–147.CrossRefGoogle Scholar
  47. Mitsunobu, S., Takahashi, Y., Terada, Y., & Sakata, M. (2010). Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides. Environmental Science & Technology, 44(10), 3712–3718.CrossRefGoogle Scholar
  48. Mondal, K., Jegadeesan, G., & Lalvani, S. B. (2004). Removal of selenate by Fe and NiFe nanosized particles. Industrial & Engineering Chemistry Research, 43(16), 4922–4934.CrossRefGoogle Scholar
  49. Mylon, S. E., Sun, Q. A., & Waite, T. D. (2010). Process optimization in use of zero valent iron nanoparticles for oxidative transformations. Chemosphere, 81(1), 127–131.CrossRefGoogle Scholar
  50. Neumann, A., Kaegi, R., Voegelin, A., Hussam, A., Munir, A. K. M., & Hug, S. J. (2013). Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environmental Science & Technology, 47(9), 4544–4554.CrossRefGoogle Scholar
  51. Noubactep, C. (2008). A critical review on the process of contaminant removal in Fe-0-H2O systems. Environmental Technology, 29(8), 909–920.CrossRefGoogle Scholar
  52. Noubactep, C. (2009a). An analysis of the evolution of reactive species in Fe-0/H2O systems. Journal of Hazardous Materials, 168(2-3), 1626–1631.CrossRefGoogle Scholar
  53. Noubactep, C. (2009b). Comment on "pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water". Environmental Science & Technology, 43(1), 233–233.CrossRefGoogle Scholar
  54. Noubactep, C., Meinrath, G., Dietrich, P., Sauter, M., & Merkel, B. J. (2005). Testing the suitability of zerovalent iron materials for reactive walls. Environmental Chemistry, 2(1), 71–76.CrossRefGoogle Scholar
  55. Nurmi, J. T., & Tratnyek, P. G. (2008). Electrochemical studies of packed iron powder electrodes: Effects of common constituents of natural waters on corrosion potential. Corrosion Science, 50(1), 144–154.CrossRefGoogle Scholar
  56. Nurmi, J. T., Bandstra, J. Z., & Tratnyek, P. G. (2004). Packed powder electrodes for characterizing the reactivity of granular iron in borate solutions. Journal of the Electrochemical Society, 151(6), B347–B353.CrossRefGoogle Scholar
  57. Obiri-Nyarko, F., Grajales-Mesa, S. J., & Malina, G. (2014). An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111, 243–259.CrossRefGoogle Scholar
  58. Pang, S. Y., Jiang, J., Ma, J., Pang, S. Y., & Ouyang, F. (2009). New insight into the oxidation of arsenite by the reaction of zerovalent iron and oxygen. Comment on “pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water”. Environmental Science & Technology, 43(10), 3978–3979.CrossRefGoogle Scholar
  59. Pang, S. Y., Jiang, J., & Ma, J. (2011). Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: Evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environmental Science & Technology, 45(1), 307–312.CrossRefGoogle Scholar
  60. Peipmann, R., Lange, R., Kubeil, C., Mutschke, G., & Bund, A. (2010). Magnetic field effects on the mass transport at small electrodes studied by voltammetry and magnetohydrodynamic impedance measurements. Electrochimica Acta, 56(1), 133–138.CrossRefGoogle Scholar
  61. Prasad, P., Das, C., & Golder, A. K. (2011). Reduction of Cr (VI) to Cr (III) and removal of total chromium from wastewater using scrap iron in the form of zerovalent iron (ZVI): Batch and column studies. The Canadian Journal of Chemical Engineering, 89(6), 1575–1582.CrossRefGoogle Scholar
  62. Ragsdale, S. R., Grant, K. M., & White, H. S. (1998). Electrochemically generated magnetic forces. Enhanced transport of a paramagnetic redox species in large, nonuniform magnetic fields. Journal of the American Chemical Society, 120(51), 13461–13468.CrossRefGoogle Scholar
  63. Ritter, K., Odziemkowski, M. S., & Gillham, R. W. (2002). An in situ study of the role of surface films on granular iron in the permeable iron wall technology. Journal of Contaminant Hydrology, 55(1-2), 87–111.CrossRefGoogle Scholar
  64. Scheinost, A. C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A. K., Funke, H., & Johnson, C. A. (2006). Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 70(13), 3299–3312.CrossRefGoogle Scholar
  65. Sedlak, D. L., & Andren, A. W. (1991). Oxidation of chlorobenzene with Fenton’s reagent. Environmental Science & Technology, 25(4), 777–782.CrossRefGoogle Scholar
  66. Stern, M., & Geary, A. L. (1957). Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. Journal of the Electrochemical Society, 104(1), 56–63.CrossRefGoogle Scholar
  67. Su, C. M., & Puls, R. W. (2001). Arsenate and arsenite removal by zerovalent iron: Effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride. Environmental Science & Technology, 35(22), 4562–4568.CrossRefGoogle Scholar
  68. Sueptitz, R., Koza, J., Uhlemann, M., Gebert, A., & Schultz, L. (2009). Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions. Electrochimica Acta, 54(8), 2229–2233.CrossRefGoogle Scholar
  69. Sueptitz, R., Tschulik, K., Uhlemann, M., Schultz, L., & Gebert, A. (2011). Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions. Corrosion Science, 53(10), 3222–3230.CrossRefGoogle Scholar
  70. Sun, Y. K., Guan, X. H., Wang, J. M., Meng, X. G., Xu, C. H., & Zhou, G. M. (2014). Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: An XAFS investigation. Environmental Science & Technology, 48(12), 6850–6858.CrossRefGoogle Scholar
  71. Sun, Y., Hu, Y., Huang, T., Li, J., Qin, H., & Guan, X. (2017). Combined Effect of Weak Magnetic Fields and Anions on Arsenite Sequestration by Zerovalent Iron: Kinetics and Mechanisms. Environ. Sci. Technol., 51(7), 3742–3750.CrossRefGoogle Scholar
  72. Tang, C., Huang, Y. H., Zeng, H., & Zhang, Z. (2014). Promotion effect of Mn 2+ and Co 2+ on selenate reduction by zero-valent iron. Chemical Engineering Journal, 244, 97–104.CrossRefGoogle Scholar
  73. Tanimoto, Y., Katsuki, A., Yano, H., & Watanabe, S. (1997). Effect of high magnetic field on the silver deposition from its aqueous solution. Journal of Physical Chemistry A, 101(40), 7359–7363.CrossRefGoogle Scholar
  74. Triszcz, J. M., Port, A., & Einschlag, F. S. G. (2009). Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal. Chemical Engineering Journal, 150(2-3), 431–439.CrossRefGoogle Scholar
  75. Turcio-Ortega, D., Fan, D. M., Tratnyek, P. G., Kim, E. J., & Chang, Y. S. (2012). Reactivity of Fe/FeS nanoparticles: Electrolyte composition effects on corrosion electrochemistry. Environmental Science & Technology, 46(22), 12484–12492.CrossRefGoogle Scholar
  76. Wang, C., & Zhang, W. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 94(18), 9602–9607.Google Scholar
  77. Waskaas, M., & Kharkats, Y. I. (1999). Magnetoconvection phenomena: A mechanism for influence of magnetic fields on electrochemical processes. Journal of Physical Chemistry B, 103(23), 4876–4883.CrossRefGoogle Scholar
  78. Waskaas, M., & Kharkats, Y. I. (2001). Effect of magnetic fields on convection in solutions containing paramagnetic ions. Journal of Electroanalytical Chemistry, 502(1-2), 51–57.CrossRefGoogle Scholar
  79. Xi, J. H., He, M. C., & Lin, C. Y. (2011). Adsorption of antimony(III) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition. Microchemical Journal, 97(1), 85–91.CrossRefGoogle Scholar
  80. Xie, Y., & Cwiertny, D. M. (2010). Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Environmental Science & Technology, 44(22), 8649–8655.CrossRefGoogle Scholar
  81. Xu, C., Zhang, B., Zhu, L., Lin, S., Sun, X., Jiang, Z., & Tratnyek, P. G. (2016a). Sequestration of antimonite by zerovalent iron: Using weak magnetic field effects to enhance performance and characterize reaction mechanisms. Environmental Science & Technology, 50(3), 1483–1491.CrossRefGoogle Scholar
  82. Xu, H., Sun, Y., Li, J., Li, F., & Guan, X. (2016b). Aging of zerovalent iron in synthetic groundwater: X-ray photoelectron spectroscopy depth profiling characterization and depassivation with uniform magnetic field. Environmental Science & Technology, 50(15), 8214–8222.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jinxiang Li
    • 1
  • Yuankui Sun
    • 1
  • Liping Liang
    • 2
  • Xiaohong Guan
    • 1
    Email author
  1. 1.Tongji UniversityShanghaiPeople’s Republic of China
  2. 2.Shaoxing UniversityShaoxingPeople’s Republic of China

Personalised recommendations