Electromagnetic Induction of Nanoscale Zerovalent Iron for Enhanced Thermal Dissolution/Desorption and Dechlorination of Chlorinated Volatile Organic Compounds

  • Tanapon Phenrat
  • Gregory V. Lowry


A major problem plaguing the success of in situ dechlorination using NZVI is the slow rate of dissolution of chlorinated volatile organic compounds (CVOCs) from dense nonaqueous phase liquid (DNAPL) or slow desorption of CVOCs from soil in the aqueous phase. This is because the dechlorination using NZVI is surface mediated; therefore, contaminants must be dissolved to transport to the NZVI surface. For this reason, any action to enhance the DNAPL dissolution or desorption of CVOCs from the soil and DNAPL can speed the reaction rate and improve the electron utilization efficiency of the remediation. This chapter summarizes the state of knowledge about using a low-frequency (LF) electromagnetic field (EMF) (150 kHz) with NZVI to enhance the CVOC degradation rate in a DNAPL system and in a soil and groundwater system via thermal-enhanced CVOC dissolution or desorption followed by enhanced dechlorination using NZVI. NZVI is a ferromagnetic particle capable of magnetic induction heating under an applied LF EMF. The heat generated can speed up the dechlorination reaction and can promote DNAPL dissolution or desorption of contaminants from soils. The most recent work on using this novel approach is summarized as a proof of concept. The CVOC degradation kinetics in groundwater and in soil with groundwater as well as in a DNAPL system by NZVI both with and without LF EMF were compared to quantify the benefits of using LF EMF for enhanced thermal dissolution and magnetically enhanced NZVI corrosion.


Nanoscale zerovalent iron Electromagnetic field Low frequency Electromagnetic induction heating Thermal enhanced dissolution Thermal enhanced desorption DNAPL Ferromagnetic Combined remedies with NZVI 



The authors are thankful for research funding from (1) the Thailand Research Fund (TRF) (MRG5680129); (2) the National Nanotechnology Center (Thailand), a member of the National Science and Technology Development Agency, through grant number P-11-00989; and (3) the National Research Council (R2556B070).


  1. Bañobre-López, M., Teijeiro, A., & Rivas, J. (2013). Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology and Radiotherapy, 18(6), 397–400.CrossRefGoogle Scholar
  2. Berge, N. D., & Ramsburg, C. A. (2010). Iron-mediated trichloroethene reduction within nonaqueous phase liquid. Journal of Contaminant Hydrology, 118(3–4), 105–116.CrossRefGoogle Scholar
  3. Bishop, E. J., Fowler, D. E., Skluzacek, J. M., Seibel, E., & Mallouk, T. E. (2010). Anionic homopolymers efficiently target zerovalent iron particles to hydrophobic contaminants in sand columns. Environmental Science & Technology, 44(23), 9069–9074.CrossRefGoogle Scholar
  4. Dalla Vecchia, E., Coisson, M., Appino, C., Vinai, F., & Sethi, R. (2009). Magnetic characterization and interaction modeling of zerovalent iron nanoparticles for the remediation of contaminated aquifers. Journal of Nanoscience and Nanotechnology, 9(5), 3210–3218.CrossRefGoogle Scholar
  5. Fagerlund, F., Illangasekare, T. H., Phenrat, T., Kim, H.-J., & Lowry, G. V. (2012). PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Journal of Contaminant Hydrology, 131(1–4), 9–28.CrossRefGoogle Scholar
  6. He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial and Engineering Chemistry Research, 46(1), 29–34.CrossRefGoogle Scholar
  7. He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44(7), 2360–2370.CrossRefGoogle Scholar
  8. Henn, K. W., & Waddill, D. W. (2006). Utilization of nanoscale zero-valent iron for source remediation - a case study. Remediation Journal, 16, 57–77.CrossRefGoogle Scholar
  9. Jiang, X., Qiao, J., Lo, I. M. C., Wang, L., Guan, X., Lu, Z., Zhou, G., & Xu, C. (2015). Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zerovalent iron. Journal of Hazardous Materials, 283, 880–887.CrossRefGoogle Scholar
  10. Johnson, R. L., Nurmi, J. T., O’Brien Johnson, G. S., Fan, D., O’Brien Johnson, R. L., Shi, Z., Salter-Blanc, A. J., Tratnyek, P. G., & Lowry, G. V. (2013). Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environmental Science & Technology, 47(3), 1573–1580.CrossRefGoogle Scholar
  11. Kitazawa, K., Hirota, N., Ikezoe, Y., Uetake, H., Kaihatsu, T., & Takayama, T. (2002). Magneto-convection processes observed in non-magnetic liquid–gas system. Riken Review, 44, 156–158.Google Scholar
  12. Kocur, C. M., Lomheim, L., Boparai, H. K., Chowdhury, A. I., Weber, K. P., Austrins, L. M., Edwards, E. A., Sleep, B. E., & O’Carroll, D. M. (2015). Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection. Environmental Science & Technology, 49(14), 8648–8656.CrossRefGoogle Scholar
  13. Li, Z., Kawashita, M., Araki, N., Mitsumori, M., Hiraoka, M., & Doi, M. (2010). Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer. Materials Science and Engineering: C, 30(7), 990–996.CrossRefGoogle Scholar
  14. Liang, L., Sun, W., Guan, X., Huang, Y., Choi, W., Bao, H., Li, L., & Jiang, Z. (2014). Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron. Water Research, 49, 371–380.CrossRefGoogle Scholar
  15. Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 41(22), 7881–7887.CrossRefGoogle Scholar
  16. Martin, J. E., Herzing, A. A., Yan, W., Li, X. Q., Koel, B. E., Kiely, C. J., & Zhang, W. X. (2008). Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir, 24(8), 4329–4334.CrossRefGoogle Scholar
  17. Miller, C. T., Poirer-McNeill, M. M., & Mayer, A. S. (1990). Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resources Research, 26(11), 2783–2796.CrossRefGoogle Scholar
  18. O’Carroll, D. M., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.CrossRefGoogle Scholar
  19. Pablico-Lansigan, M. H., Situa, S. F., & Samia, A. C. S. (2013). Magnetic particle imaging: Advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale, 5, 4040–4055.CrossRefGoogle Scholar
  20. Phenrat, T., & Kumloet, I. (2016). Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept. Water Research, 107, 19–28.CrossRefGoogle Scholar
  21. Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41(1), 284–290.CrossRefGoogle Scholar
  22. Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environmental Science & Technology, 43(5), 1507–1514.CrossRefGoogle Scholar
  23. Phenrat, T., Schoenfelder, D., Losi, M., Yi, J., Peck, S. A., & Lowry, G. V. (2010). In C. L. Geiger & K. M. Carvalho-Knighton (Eds.), Environmental applications of nanoscale and microscale reactive metal particles (pp. 183–202). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  24. Phenrat, T., Crimi, M., Illanagasekare, T., & Lowry, G. V. (2011a). In M. Ram, E. S. Andreescu, & D. Hanming (Eds.), Nanotechnology for environmental decontamination (pp. 271–322). New York: McGraw-Hill Publisher.Google Scholar
  25. Phenrat, T., Fagerlund, F., Illanagasekare, T., Lowry, G. V., & Tilton, R. D. (2011b). Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45(14), 6102–6109.CrossRefGoogle Scholar
  26. Phenrat, T., Schoenfelder, D., Kirschling, T. L., Tilton, R. D., & Lowry, G. V. (2015). Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environmental Science and Pollution Research, 25(8), 7157–7169.CrossRefGoogle Scholar
  27. Phenrat, T., Thongboot, T., & Lowry, G. V. (2016). Electromagnetic Induction of Zerovalent Iron (ZVI) powder and nanoscale Zerovalent Iron (NZVI) particles enhances Dechlorination of trichloroethylene in contaminated groundwater and soil: Proof of concept. Environmental Science & Technology, 50(2), 872–880.CrossRefGoogle Scholar
  28. Powers, S. E., Abriola, L. M., & Weber, W. J., Jr. (1992). An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Steady state mass transfer rates. Water Resources Research, 28(10), 2691–2705.CrossRefGoogle Scholar
  29. Quinn, J., Geiger, C., Clausen, C., Brooks, K., & Coon, C. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 39(5), 1309–1318.CrossRefGoogle Scholar
  30. Rosická, D., & Šembera, J. (2011). Assessment of influence of magnetic forces on aggregation of zero-valent Iron nanoparticles. Nanoscale Research Letters, 6, 10.CrossRefGoogle Scholar
  31. Saba, T., & Illangasekare, T. H. (2000). Effect of groundwater flow dimensionality on mass transfer from entrapped nonaqueous phase liquid contaminants. Water Resources Research, 36(4), 971–980.CrossRefGoogle Scholar
  32. Sakulchaicharoen, N., O’Carroll, D. M., & Herrera, J. E. (2010). Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. Journal of Contaminant Hydrology, 118(3–4), 117–127.CrossRefGoogle Scholar
  33. Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5(12), 2489–2494.CrossRefGoogle Scholar
  34. Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24(1), 45–57.CrossRefGoogle Scholar
  35. Su, C., Puls, R. W., Krug, T. A., Watling, M. T., O’Hara, S. K., Quinn, J. W., & Ruiz, N. W. (2012). A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Research, 46(16), 5071–5084.CrossRefGoogle Scholar
  36. Taghavy, A., Costanza, J., Pennell, K. D., & Abrio, L. M. (2010). Effectiveness of nanoscale zero-valent iron for treatment of a PCE–DNAPL source zone. Journal of Contaminant Hydrology, 118(3–4), 128–142.CrossRefGoogle Scholar
  37. Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1(2), 44–48.CrossRefGoogle Scholar
  38. Waskaas, M., & Kharkats, Y. I. (1999). Magnetoconvection phenomena: A mechanism for influence of magnetic fields on electrochemical processes. The Journal of Physical Chemistry. B, 103, 4876–4883.CrossRefGoogle Scholar
  39. Zhan, J., Zheng, T., Piringer, G., Day, C., McPherson, G. L., Lu, Y., Papadopoulos, K., & John, V. T. (2009). Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 42(23), 8871–8876.CrossRefGoogle Scholar
  40. Zhang, W.-X., Wang, C.-B., & Lien, H.-L. (1998). Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40, 387–395.CrossRefGoogle Scholar
  41. Zhang, M., He, F., Zhao, D., & Hao, X. (2011). Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter. Water Research, 45(7), 2401–2414.CrossRefGoogle Scholar
  42. Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Tanapon Phenrat
    • 1
    • 2
  • Gregory V. Lowry
    • 3
    • 4
  1. 1.Department of Civil Engineering, Environmental Engineering ProgramNaresuan UniversityPhitsanulokThailand
  2. 2.Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of Engineering, Naresuan UniversityPhitsanulokThailand
  3. 3.Center for Environmental Implications of Nanotechnology (CEINT)DurhamUSA
  4. 4.Department of Civil & Environmental EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations