Advertisement

Microbial Perspective of NZVI Applications

  • Panaya Kotchaplai
  • Eakalak Khan
  • Alisa S. VangnaiEmail author
Chapter

Abstract

Nanoscale zero-valent iron (NZVI), due to its small size and high reactivity, is regarded as a promising alternative especially for in situ environmental remediation. There has already been a number of successful in situ contaminant removal/remediation using NZVI. In this context, interactions between NZVI and environmental microorganisms at the contaminated site are inevitable. The high reactivity of NZVI could potentially cause an adverse effect to microorganisms that are involved in environmental restoration. The interactions between NZVI and microorganism may in turn affect NZVI reactivity. Accordingly, it is important to understand the microbial aspects of NZVI applications. This chapter provides an overview of the consequent effect of the interactions between NZVI and microorganisms including the effect of NZVI on microorganisms as well as the effect of microorganisms on NZVI behavior. It specifically focuses on the reported effects of NZVI on microbial survival and activity, as well as several factors causing the complication of toxicity assessment. The prospects of NZVI-enhanced bioremediation is also discussed. Finally, this chapter presents future research needs in furtherance of successful NZVI applications.

Keywords

Nanoscale zerovalent iron Microbiology Bioremediation Combined remedies with NZVI 

Notes

Acknowledgments

The authors thank Deborah Ballantine, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

References

  1. Adeleye, A. S., Keller, A. A., Miller, R. J., & Lenihan, H. S. (2013). Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. Journal of Nanoparticle Research, 15, 1–18.CrossRefGoogle Scholar
  2. An, Y., Li, T., Jin, Z., Dong, M., Li, Q., & Wang, S. (2009). Decreasing ammonium generation using hydrogenotrophic bacteria in the process of nitrate reduction by nanoscale zero-valent iron. The Science of the Total Environment, 407, 5465–5470.CrossRefGoogle Scholar
  3. An, Y., Li, T., Jin, Z., Dong, M., Xia, H., & Wang, X. (2010). Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification. Bioresource Technology, 101, 9825–9828.CrossRefGoogle Scholar
  4. Auffan, M., Achouak, W., Rose, J., Roncato, M. A., Chaneac, C., Waite, D. T., Masion, A., Woicik, J. C., Wiesner, M. R., & Bottero, J. Y. (2008). Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmental Science & Technology, 42, 6730–6735.CrossRefGoogle Scholar
  5. Badri, D. V., Weir, T. L., van der Lelie, D., & Vivanco, J. M. (2009). Rhizosphere chemical dialogues: Plant-microbe interactions. Current Opinion in Biotechnology, 20, 642–650.CrossRefGoogle Scholar
  6. Bae, S., & Lee, W. (2014). Influence of riboflavin on nanoscale zero-valent iron reactivity during the degradation of carbon tetrachloride. Environmental Science & Technology, 48, 2368–2376.CrossRefGoogle Scholar
  7. Basnet, M., Gershanov, A., Wilkinson, K. J., Ghoshal, S., & Tufenkji, N. (2016). Interaction between palladium-doped zerovalent iron nanoparticles and biofilm in granular porous media: Characterization, transport and viability. Environmental Science-Nano, 3, 127–137.CrossRefGoogle Scholar
  8. Ben-Moshe, T., Frenk, S., Dror, I., Minz, D., & Berkowitz, B. (2013). Effects of metal oxide nanoparticles on soil properties. Chemosphere, 90, 640–646.CrossRefGoogle Scholar
  9. Calderon, B., & Fullana, A. (2015). Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Research, 83, 1–9.CrossRefGoogle Scholar
  10. Chai, H., Yao, J., Sun, J., Zhang, C., Liu, W., Zhu, M., & Ceccanti, B. (2015). The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bulletin of Environmental Contamination and Toxicology, 94, 490–495.CrossRefGoogle Scholar
  11. Chaithawiwat, K., Vangnai, A., McEvoy, J. M., Pruess, B., Krajangpan, S., & Khan, E. (2016). Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. The Science of the Total Environment, 565, 857–862.CrossRefGoogle Scholar
  12. Chen, J., Xiu, Z., Lowry, G. V., & Alvarez, P. J. (2011). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research, 45, 1995–2001.CrossRefGoogle Scholar
  13. D‘Autreaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 8, 813–824.CrossRefGoogle Scholar
  14. Davey, M. E., & O‘Toole, G. A. (2000). Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews: MMBR, 64, 847–867.CrossRefGoogle Scholar
  15. Dhas, S. P., Shiny, P. J., Khan, S., Mukherjee, A., & Chandrasekaran, N. (2014). Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. Journal of Basic Microbiology, 54, 916–927.CrossRefGoogle Scholar
  16. Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Research, 43, 5243–5251.CrossRefGoogle Scholar
  17. Dimkpa, C. O., Calder, A., Gajjar, P., Merugu, S., Huang, W., Britt, D. W., McLean, J. E., Johnson, W. P., & Anderson, A. J. (2011). Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. Journal of Hazardous Materials, 188, 428–435.CrossRefGoogle Scholar
  18. Fajardo, C., Ortiz, L. T., Rodriguez-Membibre, M. L., Nande, M., Lobo, M. C., & Martin, M. (2012). Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere, 86, 802–808.CrossRefGoogle Scholar
  19. Fajardo, C., Sacca, M. L., Martinez-Gomariz, M., Costa, G., Nande, M., & Martin, M. (2013). Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere, 93, 1077–1083.CrossRefGoogle Scholar
  20. Fang, J., Lyon, D. Y., Wiesner, M. R., Dong, J., & Alvarez, P. J. (2007). Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environmental Science & Technology, 41, 2636–2642.CrossRefGoogle Scholar
  21. Gaboriaud, F., Gee, M. L., Strugnell, R., & Duval, J. F. (2008). Coupled electrostatic, hydrodynamic, and mechanical properties of bacterial interfaces in aqueous media. Langmuir: The ACS Journal of Surfaces and Colloids, 24, 10988–10995.CrossRefGoogle Scholar
  22. Hachicho, N., Hoffmann, P., Ahlert, K., & Heipieper, H. J. (2014). Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiology Letters, 355, 71–77.CrossRefGoogle Scholar
  23. Hazen, T. C., Jimenez, L., Lopez de Victoria, G., & Fliermans, C. B. (1991). Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microbial Ecology, 22, 293–304.CrossRefGoogle Scholar
  24. He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44, 2360–2370.CrossRefGoogle Scholar
  25. He, S. Y., Feng, Y. Z., Ren, H. X., Zhang, Y., Gu, N., & Lin, X. G. (2011). The impact of iron oxide magnetic nanoparticles on the soil bacterial community. Journal of Soils and Sediments, 11, 1408–1417.CrossRefGoogle Scholar
  26. He, D., Ma, J., Collins, R. N., & Waite, T. D. (2016a). Effect of structural transformation of nanoparticulate zero-valent iron on generation of reactive oxygen species. Environmental Science & Technology, 50, 3820–3828.CrossRefGoogle Scholar
  27. He, S., Feng, Y., Ni, J., Sun, Y., Xue, L., Feng, Y., Yu, Y., Lin, X., & Yang, L. (2016b). Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere, 147, 195–202.CrossRefGoogle Scholar
  28. Heipieper, H. J., Meinhardt, F., & Segura, A. (2003). The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: Biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiology Letters, 229, 1–7.CrossRefGoogle Scholar
  29. Holden, P. A., Gardea-Torresdey, J. L., Klaessig, F., Turco, R. F., Mortimer, M., Hund-Rinke, K., Cohen Hubal, E. A., Avery, D., Barcelo, D., Behra, R., Cohen, Y., Deydier-Stephan, L., Ferguson, P. L., Fernandes, T. F., Herr Harthorn, B., Henderson, W. M., Hoke, R. A., Hristozov, D., Johnston, J. M., Kane, A. B., Kapustka, L., Keller, A. A., Lenihan, H. S., Lovell, W., Murphy, C. J., Nisbet, R. M., Petersen, E. J., Salinas, E. R., Scheringer, M., Sharma, M., Speed, D. E., Sultan, Y., Westerhoff, P., White, J. C., Wiesner, M. R., Wong, E. M., Xing, B., Steele Horan, M., Godwin, H. A., & Nel, A. E. (2016). Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environmental Science & Technology, 50, 6124–6145.CrossRefGoogle Scholar
  30. Holm, P. E., Nielsen, P. H., Albrechtsen, H. J., & Christensen, T. H. (1992). Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer. Applied and Environmental Microbiology, 58, 3020–3026.Google Scholar
  31. Ikuma, K., Decho, A. W., & Lau, B. L. (2015). When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles. Frontiers in Microbiology, 6, 591.CrossRefGoogle Scholar
  32. Jacobson, K. H., Gunsolus, I. L., Kuech, T. R., Troiano, J. M., Melby, E. S., Lohse, S. E., Hu, D., Chrisler, W. B., Murphy, C. J., Orr, G., Geiger, F. M., Haynes, C. L., & Pedersen, J. A. (2015). Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes. Environmental Science & Technology, 49, 10642–10650.CrossRefGoogle Scholar
  33. Jiang, C., Xu, X., Megharaj, M., Naidu, R., & Chen, Z. (2015). Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron. The Science of the Total Environment, 530–531, 241–246.CrossRefGoogle Scholar
  34. Jiemvarangkul, P., Zhang, W. X., & Lien, H. L. (2011). Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chemical Engineering Journal, 170, 482–491.CrossRefGoogle Scholar
  35. Joshi, N., Ngwenya, B. T., & French, C. E. (2012). Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. Journal of Hazardous Materials, 241–242, 363–370.CrossRefGoogle Scholar
  36. Keller, A. A., Garner, K., Miller, R. J., & Lenihan, H. S. (2012). Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One, 7, e43983.CrossRefGoogle Scholar
  37. Khan, S. S., Srivatsan, P., Vaishnavi, N., Mukherjee, A., & Chandrasekaran, N. (2011). Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics. Journal of Hazardous Materials, 192, 299–306.Google Scholar
  38. Kim, J. Y., Park, H. J., Lee, C., Nelson, K. L., Sedlak, D. L., & Yoon, J. (2010). Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. Applied and Environmental Microbiology, 76, 7668–7670.CrossRefGoogle Scholar
  39. Kim, J. Y., Lee, C., Love, D. C., Sedlak, D. L., Yoon, J., & Nelson, K. L. (2011). Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environmental Science & Technology, 45, 6978–6984.CrossRefGoogle Scholar
  40. Kim, H. J., Phenrat, T., Tilton, R. D., & Lowry, G. V. (2012a). Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. Journal of Colloid and Interface Science, 370, 1–10.CrossRefGoogle Scholar
  41. Kim, Y. M., Murugesan, K., Chang, Y. Y., Kim, E. J., & Chang, Y. S. (2012b). Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. Journal of Chemical Technology & Biotechnology, 87, 216–224.CrossRefGoogle Scholar
  42. Kirschling, T. L., Gregory, K. B., Minkley, E. G., Jr., Lowry, G. V., & Tilton, R. D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science & Technology, 44, 3474–3480.CrossRefGoogle Scholar
  43. Kocur, C. M., Chowdhury, A. I., Sakulchaicharoen, N., Boparai, H. K., Weber, K. P., Sharma, P., Krol, M. M., Austrins, L., Peace, C., Sleep, B. E., & O‘Carroll, D. M. (2014). Characterization of nZVI mobility in a field scale test. Environmental Science & Technology, 48, 2862–2869.CrossRefGoogle Scholar
  44. Kocur, C. M., Lomheim, L., Boparai, H. K., Chowdhury, A. I., Weber, K. P., Austrins, L. M., Edwards, E. A., Sleep, B. E., & O‘Carroll, D. M. (2015). Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection. Environmental Science & Technology, 49, 8648–8656.CrossRefGoogle Scholar
  45. Kocur, C. M., Lomheim, L., Molenda, O., Weber, K. P., Austrins, L. M., Sleep, B. E., Boparai, H. K., Edwards, E. A., & O‘Carroll, D. M. (2016). Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent Iron injection. Environmental Science & Technology, 50, 7658–7670.CrossRefGoogle Scholar
  46. Koenig, J. C., Boparai, H. K., Lee, M. J., O‘Carroll, D. M., Barnes, R. J., & Manefield, M. J. (2016). Particles and enzymes: Combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. Journal of Hazardous Materials, 308, 106–112.CrossRefGoogle Scholar
  47. Kotchaplai, P., Khan, E., & Vangnai, A. S. (2017). Membrane alterations in Pseudomonas putida F1 exposed to nanoscale zerovalent iron: Effects of short-term and repetitive nZVI exposure. Environmental Science & Technology, 51, 7804–7813.CrossRefGoogle Scholar
  48. Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. (2004). Rhizoremediation: A beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions: MPMI, 17, 6–15.CrossRefGoogle Scholar
  49. Kumar, N., Omoregie, E. O., Rose, J., Masion, A., Lloyd, J. R., Diels, L., & Bastiaens, L. (2014). Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Water Research, 51, 64–72.CrossRefGoogle Scholar
  50. Laumann, S., Micic, V., & Hofmann, T. (2014). Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Water Research, 50, 70–79.CrossRefGoogle Scholar
  51. Le, T. T., Murugesan, K., Kim, E. J., & Chang, Y. S. (2014). Effects of inorganic nanoparticles on viability and catabolic activities of agrobacterium sp. PH-08 during biodegradation of dibenzofuran. Biodegradation, 25, 655–668.CrossRefGoogle Scholar
  52. Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science & Technology, 42, 4927–4933.CrossRefGoogle Scholar
  53. Lefevre, E., Bossa, N., Wiesner, M. R., & Gunsch, C. K. (2016). A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. The Science of the Total Environment, 565, 889–901.CrossRefGoogle Scholar
  54. Lerner, R. N., Lu, Q., Zeng, H., & Liu, Y. (2012). The effects of biofilm on the transport of stabilized zerovalent iron nanoparticles in saturated porous media. Water Research, 46, 975–985.CrossRefGoogle Scholar
  55. Li, X. Q., Brown, D. G., & Zhang, W. X. (2007). Stabilization of biosolids with nanoscale zero-valent iron (nZVI). Journal of Nanoparticle Research, 9, 233–243.CrossRefGoogle Scholar
  56. Li, F. B., Li, X. M., Zhou, S. G., Zhuang, L., Cao, F., Huang, D. Y., Xu, W., Liu, T. X., & Feng, C. H. (2010a). Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environmental Pollution, 158, 1733–1740.CrossRefGoogle Scholar
  57. Li, Z., Greden, K., Alvarez, P. J., Gregory, K. B., & Lowry, G. V. (2010b). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environmental Science & Technology, 44, 3462–3467.CrossRefGoogle Scholar
  58. Lin, Y. H., Tseng, H. H., Wey, M. Y., & Lin, M. D. (2010). Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. The Science of the Total Environment, 408, 2260–2267.CrossRefGoogle Scholar
  59. Liu, Y., Li, S., Chen, Z., Megharaj, M., & Naidu, R. (2014). Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere, 108, 426–432.CrossRefGoogle Scholar
  60. Lv, Y., Niu, Z., Chen, Y., & Hu, Y. (2017). Bacterial effects and interfacial inactivation mechanism of nZVI/Pd on Pseudomonas putida strain. Water Research, 115, 297–308.CrossRefGoogle Scholar
  61. Mace, C. (2006). Controlling groundwater VOCs. (cover story). Pollution Engineering, 38, 24–28.Google Scholar
  62. Miao, A. J., Schwehr, K. A., Xu, C., Zhang, S. J., Luo, Z., Quigg, A., & Santschi, P. H. (2009). The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental Pollution, 157, 3034–3041.CrossRefGoogle Scholar
  63. Mitzel, M. R., & Tufenkji, N. (2014). Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age. Environmental Science & Technology, 48, 2715–2723.CrossRefGoogle Scholar
  64. Mueller, N. C., Braun, J., Bruns, J., Cernik, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research International, 19, 550–558.CrossRefGoogle Scholar
  65. Ortega-Calvo, J. J., Jimenez-Sanchez, C., Pratarolo, P., Pullin, H., Scott, T. B., & Thompson, I. P. (2016). Tactic response of bacteria to zero-valent iron nanoparticles. Environmental Pollution, 213, 438–445.CrossRefGoogle Scholar
  66. Pandey, G., & Jain, R. K. (2002). Bacterial chemotaxis toward environmental pollutants: Role in bioremediation. Applied and Environmental Microbiology, 68, 5789–5795.CrossRefGoogle Scholar
  67. Pawlett, M., Ritz, K., Dorey, R. A., Rocks, S., Ramsden, J., & Harris, J. A. (2013). The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research International, 20, 1041–1049.CrossRefGoogle Scholar
  68. Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009a). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085.CrossRefGoogle Scholar
  69. Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009b). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environmental Science & Technology, 43, 1507–1514.CrossRefGoogle Scholar
  70. Phenrat, T., Schoenfelder, D., Kirschling, T. L., Tilton, R. D., & Lowry, G. V. (2018). Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environmental Science and Pollution Research International, 25(8), 7157–7169.CrossRefGoogle Scholar
  71. Popova, O. B., Sanina, N. M., Likhatskaya, G. N., & Bezverbnaya, I. P. (2008). Effects of copper and cadmium ions on the physicochemical properties of lipids of the marine bacterium Pseudomonas putida IB28 at different growth temperatures. Russian Journal of Marine Biology, 34, 179–185.CrossRefGoogle Scholar
  72. Sacca, M. L., Fajardo, C., Nande, M., & Martin, M. (2013). Effects of nano zero-valent iron on Klebsiella oxytoca and stress response. Microbial Ecology, 66, 806–812.CrossRefGoogle Scholar
  73. Sacca, M. L., Fajardo, C., Costa, G., Lobo, C., Nande, M., & Martin, M. (2014a). Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere, 104, 184–189.CrossRefGoogle Scholar
  74. Sacca, M. L., Fajardo, C., Martinez-Gomariz, M., Costa, G., Nande, M., & Martin, M. (2014b). Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri. PLoS One, 9, e89677.CrossRefGoogle Scholar
  75. Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349–3355.CrossRefGoogle Scholar
  76. Sevcu, A., El-Temsah, Y. S., Joner, E. J., & Cernik, M. (2011). Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes and Environments, 26, 271–281.CrossRefGoogle Scholar
  77. Shah, V., Dobiasova, P., Baldrian, P., Nerud, F., Kumar, A., & Seal, S. (2010). Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. Journal of Hazardous Materials, 178, 1141–1145.CrossRefGoogle Scholar
  78. Shephard, J. J., Savory, D. M., Bremer, P. J., & McQuillan, A. J. (2010). Salt modulates bacterial hydrophobicity and charge properties influencing adhesion of Pseudomonas aeruginosa (PA01) in aqueous suspensions. Langmuir: The ACS Journal of Surfaces and Colloids, 26, 8659–8665.CrossRefGoogle Scholar
  79. Shi, Z., Fan, D., Johnson, R. L., Tratnyek, P. G., Nurmi, J. T., Wu, Y., & Williams, K. H. (2015). Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. Journal of Contaminant Hydrology, 181, 17–35.CrossRefGoogle Scholar
  80. Shin, K. H., & Cha, D. K. (2008). Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere, 72, 257–262.CrossRefGoogle Scholar
  81. Sieger, C. H. N., Kroon, A. G. M., Batelaan, J. G., & Vanginkel, C. G. (1995). Biodegradation of carboxymethyl celluloses by Agrobacterium Cm-1. Carbohydrate Polymers, 27, 137–143.CrossRefGoogle Scholar
  82. Silambarasan, S., & Vangnai, A. S. (2017). Plant-growth promoting Candida sp. AVGB4 with capability of 4-nitroaniline biodegradation under drought stress. Ecotoxicology and Environmental Safety, 139, 472–480.CrossRefGoogle Scholar
  83. Somers, E., Vanderleyden, J., & Srinivasan, M. (2004). Rhizosphere bacterial signalling: A love parade beneath our feet. Critical Reviews in Microbiology, 30, 205–240.CrossRefGoogle Scholar
  84. Straub, K. L., Benz, M., & Schink, B. (2001). Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 34, 181–186.CrossRefGoogle Scholar
  85. Su, Y., Adeleye, A. S., Zhou, X., Dai, C., Zhang, W., Keller, A. A., & Zhang, Y. (2014). Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron. Journal of Hazardous Materials, 280, 504–513.CrossRefGoogle Scholar
  86. Sudheer Khan, S., Bharath Kumar, E., Mukherjee, A., & Chandrasekaran, N. (2011). Bacterial tolerance to silver nanoparticles (SNPs): Aeromonas punctata isolated from sewage environment. Journal of Basic Microbiology, 51, 183–190.CrossRefGoogle Scholar
  87. Tabata, K., Kasuya, K. I., Abe, H., Masuda, K., & Doi, Y. (1999). Poly(aspartic acid) degradation by a Sphingomonas sp. isolated from freshwater. Applied and Environmental Microbiology, 65, 4268–4270.Google Scholar
  88. Thuptimdang, P., Limpiyakorn, T., McEvoy, J., Pruss, B. M., & Khan, E. (2015). Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity. Journal of Hazardous Materials, 290, 127–133.CrossRefGoogle Scholar
  89. Thuptimdang, P., Limpiyakorn, T., & Khan, E. (2017). Dependence of toxicity of silver nanoparticles on Pseudomonas putida biofilm structure. Chemosphere, 188, 199–207.CrossRefGoogle Scholar
  90. Vangnai, A. S., Takeuchi, K., Oku, S., Kataoka, N., Nitisakulkan, T., Tajima, T., & Kato, J. (2013). Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 79, 7241–7248.CrossRefGoogle Scholar
  91. Vorobyova, E., Soina, V., Gorlenko, M., Minkovskaya, N., Zalinova, N., Mamukelashvili, A., Gilichinsky, D., Rivkina, E., & Vishnivetskaya, T. (1997). The deep cold biosphere: Facts and hypothesis. FEMS Microbiology Reviews, 20, 277–290.CrossRefGoogle Scholar
  92. Wang, Q., Kang, F., Gao, Y., Mao, X., & Hu, X. (2016a). Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity. Scientific Reports, 6, 21379.CrossRefGoogle Scholar
  93. Wang, S., Chen, S., Wang, Y., Low, A., Lu, Q., & Qiu, R. (2016b). Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants? Biotechnology Advances, 34, 1384–1395.CrossRefGoogle Scholar
  94. Wei, Y. T., Wu, S. C., Chou, C. M., Che, C. H., Tsai, S. M., & Lien, H. L. (2010). Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Research, 44, 131–140.CrossRefGoogle Scholar
  95. Xie, Y., & Cwiertny, D. M. (2010). Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Environmental Science & Technology, 44, 8649–8655.CrossRefGoogle Scholar
  96. Xiu, Z. M., Gregory, K. B., Lowry, G. V., & Alvarez, P. J. (2010a). Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environmental Science & Technology, 44, 7647–7651.CrossRefGoogle Scholar
  97. Xiu, Z. M., Jin, Z. H., Li, T. L., Mahendra, S., Lowry, G. V., & Alvarez, P. J. (2010b). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technology, 101, 1141–1146.CrossRefGoogle Scholar
  98. Xu, C., Peng, C., Sun, L. J., Zhang, S., Huang, H. M., Chen, Y. X., & Shi, J. Y. (2015). Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biology and Biochemistry, 86, 24–33.CrossRefGoogle Scholar
  99. Yang, Z., Wang, X.-l., Li, H., Yang, J., Zhou, L.-Y., & Liu, Y.-d. (2017). Re-activation of aged-ZVI by iron-reducing bacterium Shewanella putrefaciens for enhanced reductive dechlorination of trichloroethylene. Journal of Chemical Technology and Biotechnology, 92, 2642–2649.CrossRefGoogle Scholar
  100. Ye, L., Liu, W., Shi, Q., & Jing, C. (2017). Arsenic mobilization in spent nZVI waste residue: Effect of Pantoea sp. IMH. Environmental Pollution, 230, 1081–1089.CrossRefGoogle Scholar
  101. Zhou, L., Thanh, T. L., Gong, J., Kim, J. H., Kim, E. J., & Chang, Y. S. (2014). Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere, 104, 155–161.CrossRefGoogle Scholar
  102. Zhu, B., Xia, X., Xia, N., Zhang, S., & Guo, X. (2014). Modification of fatty acids in membranes of bacteria: Implication for an adaptive mechanism to the toxicity of carbon nanotubes. Environmental Science & Technology, 48, 4086–4095.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Panaya Kotchaplai
    • 1
    • 2
  • Eakalak Khan
    • 3
  • Alisa S. Vangnai
    • 2
    • 4
    Email author
  1. 1.International Program in Hazardous Substance and Environmental ManagementGraduate School, Chulalongkorn UniversityBangkokThailand
  2. 2.Center of Excellence on Hazardous Substance Management (HSM)Chulalongkorn UniversityBangkokThailand
  3. 3.Department of Civil and Environmental EngineeringNorth Dakota State UniversityFargoUSA
  4. 4.Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations