Nanoscale Zerovalent Iron (NZVI) for Environmental Decontamination: A Brief History of 20 Years of Research and Field-Scale Application

  • Tanapon Phenrat
  • Gregory V. Lowry
  • Peyman Babakhani


Environmental contamination continues to pose a serious threat to human health and the ecosystem. Over the next several decades, remediation research and business will be actively restoring both legacy and newly spilled sites in many countries worldwide. This chapter critically reviews the 20-year progress (1997–2017) in nanoscale zerovalent iron (NZVI) research and development from laboratory testing to pilot- and field-scale demonstrations. Several major areas of NZVI research, including (1) NZVI synthesis and reactivity, (2) aggregation, (3) transport in porous media, (4) polymer modification including carboxymethyl cellulose (CMC), (5) toxicity, (6) sulfidation, and (7) use of electromagnetic fields to enhance remediation, are discussed. Additionally, we summarize important aspects of pilot- and field-scale NZVI applications from 27 peer-reviewed articles and credible reports including the types of contaminants and NZVI used; delivery techniques; injection concentration, rates, and durations; hydrogeological conditions of the sites; pre-operations (before NZVI application); unexpected phenomena (such as clogging) during or after NZVI application; and performance monitoring including the radius of influence, treatment efficiency, and rebound. Finally, this chapter links the past, present, and future of NZVI research and application to the remaining 15 chapters of this book.


Nanoscale zerovalent iron Historical perspectives Research and development Field-scaled implementation Timeline 


  1. Babakhani, P., Fagerlund, F., Shamsai, A., Lowry, G. V., & Phenrat, T. (2015). Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe nanoparticles in saturated porous media. Environmental Science and Pollution Research International, 25(8), 7180–7199.CrossRefGoogle Scholar
  2. Bard, A. J., Parsons, R., & Jordan, J. (1985). Standard potentials in aqueous solution. New York: CRC Press.Google Scholar
  3. Bardos, P., Bone, B., Daly, P., Elliott, D., Jones, S., Lowry, G. V., & Merly, C. (2015). A risk/benefit appraisal for the application of nano-scale zero valent iron (nZVI) for the remediation of contaminated sites. Taking nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment. European Union Seventh Framework Programme (FP7/2007-2013), Project Nr.: 309517, p. 76.Google Scholar
  4. Bennett, P., He, F., Zhao, D., Aiken, B., & Feldman, L. (2010). In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 116, 35–46.CrossRefGoogle Scholar
  5. Bitsch, R., Matz, P., Kvapil, P., & Klaas, N. (2017). NanoRem Pilot Site – Solvay, Switzerland: Nanoscale zero-valent iron remediation of chlorinated solvents. CL:AIRE’s NanoRem bulletins. CL:AIRE, UK, pp. 1–6.Google Scholar
  6. Busch, J., Meißner, T., Potthoff, A., Bleyl, S., Georgi, A., Mackenzie, K., Trabitzsch, R., Werban, U., & Oswald, S. E. (2015). A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Journal of Contaminant Hydrology, 181, 59–68.CrossRefGoogle Scholar
  7. Cohen, M., & Weisbrod, N. (2017). NanoRem Pilot Site – Neot Hovav, Israel: Transport of iron nanoparticles in fractured chalk. CL:AIRE’s NanoRem bulletin. CL:AIRE, UK, pp. 1–4.Google Scholar
  8. Ding, Y., Liu, B., Shen, X., Zhong, L., & Li, X. (2013). Foam-assisted delivery of nanoscale zero valent iron in porous media. Journal of Environmental Engineering, 139, 1206–1212.CrossRefGoogle Scholar
  9. Edmiston, P. L., Osborne, C., Reinbold, K. P., Pickett, D. C., & Underwood, L. A. (2011). Pilot scale testing composite swellable organosilica nanoscale zero-valent iron—Iron-Osorb®—for in situ remediation of trichloroethylene. Remediation Journal, 22, 105–123.CrossRefGoogle Scholar
  10. Elliott, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 15, 4922–4926.CrossRefGoogle Scholar
  11. European Environment Agency. (2014). Progress in management of contaminated sites. Copenhagen, Denmark, p. 37.Google Scholar
  12. Fan, D., Anitori, R. P., Tebo, B. M., Tratnyek, P. G., Lezama Pacheco, J. S., Kukkadapu, R. K., Engelhard, M. H., Bowden, M. E., Kovarik, L., & Arey, B. W. (2013). Reductive sequestration of pertechnetate (99TcO4) by nano zero-valent iron (nZVI) transformed by abiotic sulfide. Environmental Science & Technology, 47, 5302–5310.CrossRefGoogle Scholar
  13. Fan, D., O’Brien Johnson, G., Tratnyek, P. G., & Johnson, R. L. (2016). Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR). Environmental Science & Technology, 50, 9558–9565.CrossRefGoogle Scholar
  14. FRTR. (2016). Remediation technologies screening matrix and reference guide, version 4.0. Washington, DC: FRTR.Google Scholar
  15. Gavaskar, A., Tatar, L., & Condit, W. (2005). Cost and performance report: Nanoscale zero-valent iron technologies for source remediation. Port Hueneme, CA: Naval Facilities Engineering Service Center.CrossRefGoogle Scholar
  16. Gillham, R. W., & O’Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero-valent iron. Groundwater, 32, 958–967.CrossRefGoogle Scholar
  17. Grieger, K. D., Fjordbøge, A., Hartmann, N. B., Eriksson, E., Bjerg, P. L., & Baun, A. (2010). Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? Journal of Contaminant Hydrology, 118, 165–183.CrossRefGoogle Scholar
  18. He, F., & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 39, 3314–3320.CrossRefGoogle Scholar
  19. He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44, 2360–2370.CrossRefGoogle Scholar
  20. Henn, K. W., & Waddill, D. W. (2006). Utilization of nanoscale zero-valent iron for source remediation – a case study. Remediation Journal, 16, 57–77.CrossRefGoogle Scholar
  21. Johnson, R. L., Nurmi, J. T., O’Brien Johnson, G. S., Fan, D., O’Brien Johnson, R. L., Shi, Z., Salter-Blanc, A. L., Tratnyek, P. G., & Lowry, G. V. (2013). Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environmental Science & Technology, 47, 1573–1580.CrossRefGoogle Scholar
  22. Joo, S. H., Feitz, A. J., Sedlak, D. L., & Waite, T. D. (2005). Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environmental Science & Technology, 39, 1263–1268.CrossRefGoogle Scholar
  23. Jordan, M., Shetty, N., Zenker, M. J., & Brownfield, C. (2013). Remediation of a former dry cleaner using nanoscale zero valent iron. Remediation Journal, 24, 31–48.CrossRefGoogle Scholar
  24. Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39, 1291–1298.CrossRefGoogle Scholar
  25. Kanel, S. R., Goswami, R. R., Clement, T. P., Barnett, M. O., & Zhao, D. (2008). Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environmental Science & Technology, 42, 896–900.CrossRefGoogle Scholar
  26. Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 117, 1823–1831.CrossRefGoogle Scholar
  27. Kiel, K., & Zabel, J. (2001). Estimating the economic benefits of cleaning up superfund sites: The case of Woburn, Massachusetts. The Journal of Real Estate Finance and Economics, 22, 163–184.CrossRefGoogle Scholar
  28. Kirschling, T., Gregory, K., Minkley, N., Lowry, G., & Tilton, R. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations. Environmental Science & Technology, 44, 3474–3480.CrossRefGoogle Scholar
  29. Köber, R., Hollert, H., Hornbruch, G., Jekel, M., Kamptner, A., Klaas, N., Maes, H., Mangold, K.-M., Martac, E., Matheis, A., Paar, H., Schäffer, A., Schell, H., Schiwy, A., Schmidt, K. R., Strutz, T. J., Thümmler, S., Tiehm, A., & Braun, J. (2014). Nanoscale zero-valent iron flakes for groundwater treatment. Environment and Earth Science, 72, 3339–3352.CrossRefGoogle Scholar
  30. Kocur, C., Chowdhury, A. I., Sakulchaicharoen, N., Boparai, H., Weber, K. P., Sharma, P., Krol, M. M., Austrins, L. M., Peace, C., Sleep, B. E., & O’Carroll, D. M. (2014). Characterization of nZVI mobility in a field scale test. Environmental Science & Technology, 48, 2862–2869.CrossRefGoogle Scholar
  31. Kocur, C. M., Lomheim, L., Boparai, H. K., Chowdhury, A. I., Weber, K. P., Austrins, L. M., Edwards, E. A., Sleep, B. E., & O’Carroll, D. M. (2015). Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection. Environmental Science & Technology, 49, 8648–8656.CrossRefGoogle Scholar
  32. Kocur, C. M. D., Lomheim, L., Molenda, O., Weber, K. P., Austrins, L. M., Sleep, B. E., Boparai, H. K., Edwards, E. A., & O’Carroll, D. M. (2016). Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent iron injection. Environmental Science & Technology, 50, 7658–7670.CrossRefGoogle Scholar
  33. Krol, M. M., Oleniuk, A. J., Kocur, C. M., Sleep, B. E., Bennett, P., Xiong, Z., & O’Carroll, D. M. (2013). A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environmental Science & Technology, 47, 7332–7340.CrossRefGoogle Scholar
  34. Lacina, P., Dvorak, V., Vodickova, E., Barson, P., Kalivoda, J., & Goold, S. (2015). The application of nano-sized zero-valent iron for in situ remediation of chlorinated ethylenes in groundwater: A field case study. Water Environment Research, 87, 326–333.CrossRefGoogle Scholar
  35. Laszlo, T., & Szabo, M. (2017). NanoRem Pilot Site – Balassagyarmat, Hungary: In situ groundwater remediation using Carbo-Iron® nanoparticles. CL:AIRE’s NanoRem bulletin. CL:AIRE, UK, pp. 1–6.Google Scholar
  36. Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science & Technology, 42, 4927–4933.CrossRefGoogle Scholar
  37. Li, X.-Q., & Zhang, W.-X. (2007). Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 111, 6939–6946.CrossRefGoogle Scholar
  38. Li, Z., Greden, K., Alvarez, P. J., Gregory, K. B., & Lowry, G. V. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environmental Science & Technology, 44, 3462–3467.CrossRefGoogle Scholar
  39. Li, X. N., Jiao, W. T., Xiao, R. B., Chen, W. P., & Chang, A. C. (2015). Soil pollution and site remediation policies in China: A review. Environmental Reviews, 23, 1–12.CrossRefGoogle Scholar
  40. Liang, L., Guan, X., Shi, Z., Li, J., Wu, Y., & Tratnyek, P. (2014). Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron. Environmental Science & Technology, 48, 6326–6334.CrossRefGoogle Scholar
  41. Lien, H.-L., & Zhang, W. X. (1999). Transformation of chlorinated methanes by nanoscale Iron particles. Journal of Environmental Engineering, 125, 1042–1047.CrossRefGoogle Scholar
  42. Lien, H.-L., & Zhang, W. X. (2001). Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A, 191, 97–105.CrossRefGoogle Scholar
  43. Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39, 1338–1345.CrossRefGoogle Scholar
  44. Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Jenkins, A., Ferrier, R. C., Li, H., Luo, W., & Wang, T. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77, 5–15.CrossRefGoogle Scholar
  45. Mackenzie, K., Bleyl, S., Kopinke, F. D., Doose, H., & Bruns, J. (2016). Carbo-Iron as improvement of the nanoiron technology: Fromlaboratory design to the field test. The Science of the Total Environment, 563–564, 641–648.CrossRefGoogle Scholar
  46. Mueller, N. C., Braun, J., Bruns, J., Černík, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research International, 19, 550–558.CrossRefGoogle Scholar
  47. Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., Wang, C., Linehan, J. C., Matson, D. W., Penn, R. L., & Driessen, M. D. (2005). Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 39, 1221–1230.CrossRefGoogle Scholar
  48. NanoRem (2018). Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment. NanoRem.
  49. O’Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.CrossRefGoogle Scholar
  50. O’Hara, S., Krug, T., Quinn, J., Clausen, C., & Geiger, C. (2006). Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediation Journal, 16, 35–56.CrossRefGoogle Scholar
  51. Oppegard, A. L., Darnell, F. J., & Miller, H. C. (1961). Magnetic properties of single-domain iron and iron-cobalt particles prepared by borohydride reduction. Journal of Applied Physics, 32, S184.CrossRefGoogle Scholar
  52. Otaegi, N., & Cagigal, E. (2017). NanoRem Pilot Site – Nitrastur, Spain: Remediation of arsenic in groundwater using nanoscale zero-valent iron. CL:AIRE’s NanoRem bulletin. CL:AIRE, UK, pp. 1–6.Google Scholar
  53. Panagos, P., Liedekerke, M. V., Yigini, Y., & Montanarella, L. (2013). Contaminated sites in Europe: Review of the current situation based on data collected through a European network. Journal of Environmental and Public Health, 2013, 158764.CrossRefGoogle Scholar
  54. Phenrat, T., & Kumloet, I. (2016). Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept. Water Research, 107, 19–28.CrossRefGoogle Scholar
  55. Phenrat, T., & Lowry, G. V. (2009). Physicochemistry of polyelectrolyte coatings that increase stability, mobility, and contaminant specificity of reactive nanoparticles used for groundwater remediation. In N. Savage, M. Diallo, J. Duncan, A. Street, & R. Sustich (Eds.), Nanotechnology applications: Solutions for improving water quality (pp. 249–267). New York: William Andrew Publisher.CrossRefGoogle Scholar
  56. Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284–290.CrossRefGoogle Scholar
  57. Phenrat, T., Saleh, N., Sirk, K., Kim, H.-J., Tilton, R. D., & Lowry, G. V. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 10, 795–814.CrossRefGoogle Scholar
  58. Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009a). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085.CrossRefGoogle Scholar
  59. Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009b). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environmental Science & Technology, 43, 1507–1514.CrossRefGoogle Scholar
  60. Phenrat, T., Long, T. C., Lowry, G. V., & Veronesi, B. (2009c). Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environmental Science & Technology, 43, 195–200.CrossRefGoogle Scholar
  61. Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010a). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118, 152–164.CrossRefGoogle Scholar
  62. Phenrat, T., Song, J. E., Cisneros, C. M., Schoenfelder, D. P., Tilton, R. D., & Lowry, G. V. (2010b). Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: Development of an empirical model. Environmental Science & Technology, 44, 4531–4538.CrossRefGoogle Scholar
  63. Phenrat, T., Fagerlund, F., Illanagasekare, T., Lowry, G. V., & Tilton, R. D. (2011). Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45, 6102–6109.CrossRefGoogle Scholar
  64. Phenrat, T., Thongboot, T., & Lowry, G. V. (2016). Electromagnetic induction of zerovalent iron (ZVI) powder and nanoscale zerovalent iron (NZVI) particles enhances dechlorination of trichloroethylene in contaminated groundwater and soil: Proof of concept. Environmental Science & Technology, 50, 872–880.CrossRefGoogle Scholar
  65. Phenrat, T., Teeratitayangkul, P., Prasertsung, I., Parichatprecha, R., Jitsangiam, P., Chomchalow, N., & Wichai, S. (2017). Vetiver plantlets in aerated system degrade phenol in illegally dumped industrial wastewater by phytochemical and rhizomicrobial degradation. Environmental Science and Pollution Research, 24, 13235–13246.CrossRefGoogle Scholar
  66. Phenrat, T., Ba, Q. T., Piaowan, K., Thongboot, T., Le, S. T., & Sawasdee, T. (2018). Arsenic residue in residential area after cleanup of pesticide illegal dumping sources in Thanh Hoa province, Central Vietnam. Environmental Forensics, 19, 66–78.CrossRefGoogle Scholar
  67. Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent Iron. Environmental Science & Technology, 34, 2564–2569.CrossRefGoogle Scholar
  68. Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L., Shuh, D. K., & Mallouk, T. E. (2001). Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials, 13, 479–486.CrossRefGoogle Scholar
  69. Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W. S., Gavaskar, A., & Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Engineering Science, 39, 1309–1318.Google Scholar
  70. Reuters. (2017). China needs patience to fight costly war against soil pollution: Government. Reuters.Google Scholar
  71. Reynolds, G. W., Hoff, J. T., & Gillham, R. W. (1900). Sampling bias caused by materials used to monitor halocarbons in groundwater. Environmental Science & Technology, 24, 135–142.CrossRefGoogle Scholar
  72. Rujivanarom, P. (2017). Thai mine “destroyed Myanmar water sources”. The Nation, Bangkok: The Nation.Google Scholar
  73. Rujivanarom, P. (2018). Residents demand help after report concludes mine hazard. The Nation, Bangkok.
  74. Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5, 2489–2494.CrossRefGoogle Scholar
  75. Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24, 45–57.CrossRefGoogle Scholar
  76. Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349–3355.Google Scholar
  77. Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16, 2187–2193.CrossRefGoogle Scholar
  78. Stejskal, V., Lederer, T., Kvapil, P., Slunsky, J., & Skácelová, P. (2017). NanoRem Pilot Site – Spolchemie I, Czech Republic: Nanoscale zero-valent iron remediation of chlorinated hydrocarbons. NanoRem bulletin. CL:AIRE, UK, pp. 1–8.Google Scholar
  79. Su, C., Puls, R. W., Krug, T. A., Watling, M. T., O’Hara, S. K., Quinn, J. W., & Ruiz, N. E. (2013). Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years. Water Research, 47, 4095–4106.CrossRefGoogle Scholar
  80. Taghavy, A., Costanza, J., Pennell, K. D., & Abrio, L. M. (2010). Effectiveness of nanoscale zero-valent iron for treatment of a PCE–DNAPL source zone. Journal of Contaminant Hydrology, 118, 128–142.CrossRefGoogle Scholar
  81. The Economist. (2017). The most neglected threat to public health in China is toxic soil. The Economist.Google Scholar
  82. US.EPA. (2011). Beneficial effects of the superfund program (p. 25). Washington, DC: Office of Superfund Remediation and Technology Innovation.Google Scholar
  83. US.EPA. (2018a). Redevelopment economics at superfund sites. Washington, DC: US.EPA.Google Scholar
  84. US.EPA. (2018b). Superfund: National priorities list (NPL). Washington, DC: US.EPA.Google Scholar
  85. USEPA. (2004). Cleaning Up the Nation's Waste Sites: Markets and Technology Trends, EPA 542-R-04-015, September 2004, Cincinnati, OH, 338 page.Google Scholar
  86. Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31, 2154–2156.CrossRefGoogle Scholar
  87. Wei, Y.-T., Wu, S.-C., Chou, C.-M., Che, C.-H., Tsai, S.-M., & Lien, H.-L. (2010). Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Research, 44, 131–140.CrossRefGoogle Scholar
  88. Wei, Y. T., Wu, S. C., Yang, S. W., Che, C.-H., Lien, H.-L., & Huang, D. H. (2012). Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. Journal of Hazardous Materials, 211–212, 373–380.CrossRefGoogle Scholar
  89. Wiesner, M. R., Lowry, G. V., Alvarez, P., Dionysiou, D., & Biswas, P. (2006). Assessing the risks of manufactured nanomaterials. Environmental Science & Technology, 40, 4336–4345.CrossRefGoogle Scholar
  90. Xiu, Z. M., Jin, Z. H., Li, T. L., Mahendra, S., Lowry, G. V., & Alvarez, P. J. (2010). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technology, 101, 1141–1146.CrossRefGoogle Scholar
  91. Zhan, J., Zheng, T., Piringer, G., Day, C., McPherson, G. L., Lu, Y., Papadopoulos, K., & John, V. T. (2008). Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 42, 8871–8876.CrossRefGoogle Scholar
  92. Zhang, W.-X., Wang, C.-B., & Lien, H.-L. (1998). Treatment of chlorinated organic comtaminants with nanoscale bimetallic particles. Catalysis Today, 40, 387–395.CrossRefGoogle Scholar
  93. Zheng, T., Zhan, J., He, J., Day, C., Lu, Y., McPherson, G. L., Piringer, G., & John, V. T. (2008). Reactivity characteristics of nanoscale zerovalent iron--silica composites for trichloroethylene remediation. Environmental Science & Technology, 42, 4494–4499.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Tanapon Phenrat
    • 1
    • 2
  • Gregory V. Lowry
    • 3
    • 4
  • Peyman Babakhani
    • 5
    • 6
  1. 1.Department of Civil Engineering, Environmental Engineering ProgramNaresuan UniversityPhitsanulokThailand
  2. 2.Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of EngineeringNaresuan UniversityPhitsanulokThailand
  3. 3.Center for Environmental Implications of Nanotechnology (CEINT)Carnegie Mellon UniversityPittsburghUSA
  4. 4.Department of Civil & Environmental EngineeringCarnegie Mellon UniversityPittsburghUSA
  5. 5.Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu CityTaiwan
  6. 6.Center for Engineering Sustainability, School of EngineeringUniversity of LiverpoolLiverpoolUK

Personalised recommendations