HIV-1 GP160 (GP120/GP40) Trimer ENV Spike Protein

  • Pandjassarame Kangueane


The design, development, and testing of a successful HIV-1/AIDS vaccine formula are a continuing endeavor over the last two decades. The contemplation of HIV-1/GP160 (cleaved GP120/GP40) trimer complex ENV spike as a vaccine candidate is a biotechnological challenge due to downstream processing issues such as purification, refolding, and conformational stability. The production and reconstitution of protein subunits to form the trimer spike complex for effective immunity triggered by structural conformation are both a protein folding and a protein-protein interaction problem. An effective HIV-1/GP160 (cleaved GP120/GP40) trimer ENV spike complex has nine interfaces with three different types between GP120/GP120, GP40/GP40, and GP120/GP40. This complex protein assembly of recombinant protein subunits is critical for creating a viable immune response in the context of HIV-1/AIDS. The development of an effective vaccine candidate is further obscured by high mutations across different clades in addition to protein glycosylation of the ENV complex. These observations provide valuable insight in the understanding of HIV-1/GP160 (cleaved GP120/GP40) trimer ENV spike complex toward the development of a workable recombinant vaccine candidate.


HIV-1 AIDS Clades GP160 GP120 GP40 Trimer Spike Glycol-protein Mutations 


  1. Adis International Ltd (2003) HIV gp120 vaccine—VaxGen: AIDSVAX, AIDSVAX B/B, AIDSVAX B/E, HIV gp120 vaccine—Genentech, HIV gp120 vaccine AIDSVAX—VaxGen, HIV vaccine AIDSVAX—VaxGen. Drugs R D 4(4):249–253CrossRefGoogle Scholar
  2. AlSalmi W, Mahalingam M, Ananthaswamy N, Hamlin C, Flores D, Gao G et al (2015) A new approach to produce HIV-1 envelope trimers: both cleavage and proper glycosylation are essential to generate authentic trimers. J Biol Chem 290(32):19780–19795CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bradley T, Fera D, Bhiman J, Eslamizar L, Lu X, Anasti K et al (2016) Structural constraints of vaccine-induced Tier-2 autologous HIV neutralizing antibodies targeting the receptor-binding site. Cell Rep 14(1):43–54CrossRefPubMedGoogle Scholar
  4. Cicala C, Nawaz F, Jelicic K, Arthos J, Fauci AS (2016) HIV-1 gp120: a target for therapeutics and vaccine design. Curr Drug Targets 17(1):122–135CrossRefPubMedGoogle Scholar
  5. de Taeye SW, Moore JP, Sanders RW (2016) HIV-1 envelope trimer design and immunization strategies to induce broadly neutralizing antibodies. Trends Immunol 37(3):221–232CrossRefPubMedPubMedCentralGoogle Scholar
  6. Doores KJ (2015) The HIV glycans shield as a target for broadly neutralizing antibodies. FEBS J 282(24):4679–4691CrossRefPubMedPubMedCentralGoogle Scholar
  7. Go EP, Cupo A, Ringe R, Pugach P, Moore JP, Desaire H (2016) Native conformation and canonical disulfide bond formation are interlinked properties of HIV-1 Env glycoproteins. J Virol 90(6):2884–2894CrossRefPubMedCentralGoogle Scholar
  8. Huang Y, DiazGranados C, Janes H, Huang Y, deCamp AC, Metch B et al (2016) Selection of HIV vaccine candidates for concurrent testing in an efficacy trial. Curr Opin Virol 17:57–65CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kangueane P, Nilofer C (2018) Protein–protein and domain–domain interaction. Springer Nature, New York, pp 1–207 ISBN: 978-981-10-7346-5, 207Google Scholar
  10. Kangueane P, Kayathri R, Sakharkar MK, Flower DR, Sadler K, Chiappelli F (2008) Designing HIV gp120 peptide vaccines: rhetoric or reality for neuro-AIDS. The spectrum of neuro-AIDS disorders: pathophysiology, diagnosis, and treatment. p 105–119Google Scholar
  11. Liu Y, Pan J, Cai Y, Grigorieff N, Harrison SC, Chen B (2017) Conformational states of a soluble, uncleaved HIV-1 envelope trimer. J Virol 91:175–117Google Scholar
  12. Liu CC, Zheng XJ, Ye XS (2016) Broadly neutralizing antibody-guided carbohydrate-based HIV vaccine design: challenges and opportunities. ChemMedChem 11(4):357–362CrossRefPubMedGoogle Scholar
  13. Nilofer C, Mohanapriya A, Kangueane P (2018) HIV-1 envelope GP160 trimer spike as a vaccine candidate. In: Shapshak P, Levine A, Foley B, Somboonwit C (eds) Global virology II—HIV and neuroaids, 1st edn. Springer-Verlag New York Inc, New York 978-1-4939-7288-3 (ISBN) Chapter 36Google Scholar
  14. Pancera M, Zhou T, Druz A, Georgiev IS, Soto C, Gorman J et al (2014) Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514(7523):455–461CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ringe RP, Yasmeen A, Ozorowski G, Go EP, Pritchard LK, Guttman M et al (2015) Influences on the design and purification of soluble, recombinant native-like HIV-1 envelope glycoprotein trimers. J Virol 89(23):12189–12210CrossRefPubMedPubMedCentralGoogle Scholar
  16. Rerks-Ngarm S, Paris RM, Chunsutthiwat S, Premsri N, Namwat C, Bowonwatanuwong C et al (2013) Extended evaluation of the virologic, immunologic, and clinical course of volunteers who acquired HIV-1 infection in a phase III vaccine trial of ALVAC-HIV and AIDSVAX B/E. J Infect Dis 207(8):1195–1205CrossRefPubMedGoogle Scholar
  17. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361(23):2209–2220CrossRefPubMedGoogle Scholar
  18. Sanders RW, Moore JP (2017) Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol Rev 275(1):161–182CrossRefPubMedPubMedCentralGoogle Scholar
  19. Shapshak P, Kangueane P, Fujimura RK, Commins D, Chiappelli F, Singer E et al (2011) Editorial neuroAIDS review. AIDS 25(2):123–141CrossRefPubMedPubMedCentralGoogle Scholar
  20. Shin SY (2016) Recent update in HIV vaccine development. Clin Exp Vaccine Res 5(1):6–11CrossRefPubMedPubMedCentralGoogle Scholar
  21. Sowmya G, Shamini G, Anita S, Sakharkar M, Mathura V, Rodriguez H et al (2011) HIV-1 envelope accessible surface and polarity: clade, blood, and brain. Bioinformation 6(2):48–56CrossRefPubMedPubMedCentralGoogle Scholar
  22. Uberla K (2008) HIV vaccine development in the aftermath of the STEP study: re-focus on occult HIV infection? PLoS Pathog 4(8):e1000114CrossRefPubMedPubMedCentralGoogle Scholar
  23. Verkerke HP, Williams JA, Guttman M, Simonich CA, Liang Y, Filipavicius M et al (2016) Epitope-independent purification of native-like envelope trimers from diverse HIV-1 isolates. J Virol 90(20):9471–9482CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ward AB, Wilson IA (2017) The HIV-1 envelope glycoprotein structure: nailing down a moving target. Immunol Rev 275(1):21–32CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pandjassarame Kangueane
    • 1
  1. 1.PondicherryIndia

Personalised recommendations