Cholera Toxin Analysis to Vaccine Design

  • Pandjassarame Kangueane


The cholera toxin (CT) from Vibrio cholerae is responsible for the clinical symptoms of cholera. CT is a hetero-hexamer (AB5) protein complex consisting of a CTA subunit with a pentamer (B5) of CTB. The AB5 hexamer complex is associated with the pathogenesis of the disease. Therefore, it is of interest to study the structure of CT analyzing the nature of interfaces between CTA and CTB to characterize mutations in known serogroups. The importance of mutations in these interfaces among known serogroups is relevant in the design of an effective vaccine candidate for cholera.


Cholera toxin (CT) Vibrio cholerae O1/O139 Non O1/O139 Mutation Protein-protein interfaces 


  1. Ansaruzzaman M et al (2004) Cholera in Mozambique, variant of Vibrio cholerae. Emerg Infect Dis 10:2057CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bag PK et al (2008) Putative virulence traits and pathogenicity of Vibrio cholerae non-O1, non-O139 isolates from surface waters in Kolkata, India. Appl Environ Microbiol 74:5635CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bagchi K et al (1993) Epidemic of diarrhea caused by Vibrio cholerae non-O1 that produced heat-stable toxin among Khmers in a camp in Thailand. J Clin Microbiol 31:1315PubMedPubMedCentralGoogle Scholar
  4. Bhattarcharya SK et al (1993) Clinical profile of acute diarrhoea cases infected with the new epidemic strain of Vibrio cholerae O139: designation of the disease as cholera. J Infect 27:11CrossRefGoogle Scholar
  5. Burnette WN et al (1994) AB5 ADP-ribosylating toxins: comparative anatomy and physiology. Structure 2:151CrossRefPubMedGoogle Scholar
  6. Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A 75:2669CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chakraborty S et al (2000) Virulence genes in environmental strains of Vibrio cholerae. Appl Environ Microbiol 66:4022CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chatterjee S et al (2009) Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol 47:1087CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen Y et al (2007) The genome of non-O1 Vibrio cholerae NRT36S demonstrates the presence of pathogenic mechanisms that are distinct from those of O1 Vibrio cholerae. Infect Immun 75:2645CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chun J et al (2009) Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A 106:15442CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dalsgaard A et al (1995) Characterization of Vibrio cholerae non-O1 serogroups obtained from an outbreak of diarrhea in Lima, Peru. J Clin Microbiol 33:2715PubMedPubMedCentralGoogle Scholar
  12. De Haan L, Hirst TR (2004) Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms. Mol Membr Biol 21:77CrossRefPubMedGoogle Scholar
  13. Domenighini M et al. (2000) Immunogenic detoxified mutants of cholera toxin and of the toxin LT, their preparation and their use for the preparation of vaccines. US Patent 6,149,919Google Scholar
  14. Finkelstein RA et al (1987) Epitopes of the cholera family of enterotoxins. Rev Infect Dis 9:544CrossRefPubMedGoogle Scholar
  15. Finkelstein RA. Owen P, Foster TS (1988) Cholera, the cholera enterotoxins, and the cholera enterotoxin-related enterotoxin family. Immuno-chemical and molecular genetic analysis of bacterial pathogens. p 85–102Google Scholar
  16. Ghosh C et al (1997) A search for cholera toxin (CT), toxin coregulated pilus (TCP), the regulatory element ToxR and other virulence factors in non-01/non-0139 Vibrio cholerae. Microb Pathog 22:199CrossRefPubMedGoogle Scholar
  17. Gill DM et al (1976) The arrangement of subunits in cholera toxin. Biochemistry 15:1242CrossRefPubMedGoogle Scholar
  18. Green BA et al. (2008) Wyeth Holdings Corporation and The Regents of the University of Colorado, assignee. Mutant forms of cholera holotoxin as an adjuvant. US Patent 7,361,355Google Scholar
  19. Jiang S et al (2003) Prevalence of cholera toxin genes (ctxA and zot) among non-O1/O139 Vibrio cholerae strains from Newport Bay, California. Appl Environ Microbiol 69:7541CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kamble TK et al (2000) Clinical profile of non-O1 strain-O139 of Vibrio cholerae in the region of Ambajogai, Maharashtra. J Assoc Physicians India 48:505PubMedGoogle Scholar
  21. Kaper JB et al (1995) Cholera. Clin Microbiol Rev 8:48PubMedPubMedCentralGoogle Scholar
  22. Kumar P et al (2009) A large cholera outbreak due to a new cholera toxin variant of the Vibrio cholerae O1 El Tor biotype in Orissa, Eastern India. J Med Microbiol 58:234CrossRefPubMedGoogle Scholar
  23. Lai CY et al (1976) Cholera toxin subunit that binds ganglioside GM1 on the cell surface. J Infect Dis 133:S23CrossRefGoogle Scholar
  24. Merritt EA et al (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci 3:166CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mitra RK et al (2001) Molecular characterisation of rough variants of Vibrio cholerae isolated from hospitalised patients with diarrhoea. J Med Microbiol 50:268CrossRefPubMedGoogle Scholar
  26. Moss J, Vaughan M (1991) Activation of cholera toxin and Escherichia coli heat-labile enterotoxins by ADP-ribosylation factors, a family of 20 kDa guanine nucleotide-binding proteins. Mol Microbiol 5:2621CrossRefPubMedGoogle Scholar
  27. Moss J et al (1994) Activation of cholera toxin by ADP-ribosylation factors. Methods Enzymol 235:640CrossRefPubMedGoogle Scholar
  28. Nair GB et al (1988) Toxins profiles of Vibrio cholerae non-O1, non-O139 from environmental sources in Calcutta, India. Appl Environ Microbiol 54:3180PubMedPubMedCentralGoogle Scholar
  29. Nair GB et al (2002) New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol 40:3296CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nair GB et al (2006) Cholera due to altered El Tor strains of Vibrio cholerae O1 in Bangladesh. J Clin Microbiol 44:4211CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nguyen BM et al (2009) Cholera outbreaks caused by an altered Vibrio cholerae O1 El Tor biotype strain producing classical cholera toxin B in Vietnam in 2007 to 2008. J Clin Microbiol 47:1568CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ohtomo N et al (1976) Size and structure of the cholera toxin molecule and its subunits. J Infect Dis 133:S31CrossRefGoogle Scholar
  33. Olsvik O et al (1993) Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J Clin Microbiol 31:22PubMedPubMedCentralGoogle Scholar
  34. Pizza M et al. (2009) Novartis vaccines and diagnostics SRL, assignee. Immunogenic detoxified mutants of cholera toxin. US Patent 7,632,513Google Scholar
  35. Ramamurthy T et al (1993) Virulence patterns of Vibrio cholerae non-O1 strains isolated from hospitalised patients with acute diarrhoea in Calcutta, India. J Med Microbiol 39:310CrossRefPubMedGoogle Scholar
  36. Rivera IN et al (2001) Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl Environ Microbiol 67:2421CrossRefPubMedPubMedCentralGoogle Scholar
  37. Raychoudhuri A et al (2009) Classical ctxB in Vibrio cholerae O1, Kolkata, India. Emerg Infect Dis 15(1):131–132.
  38. Sack DA et al (2004) Cholera. Lancet 363:223CrossRefPubMedGoogle Scholar
  39. Safa A et al (2005) Genomic relatedness of the new Matlab variants of Vibrio cholerae O1 to the classical and El Tor biotypes as determined by pulsed-field gel electrophoresis. J Clin Microbiol 43:1401CrossRefPubMedPubMedCentralGoogle Scholar
  40. Safa A et al (2006) Genetic characteristics of Matlab variants of Vibrio cholerae O1 that are hybrids between classical and El Tor biotypes. J Med Microbiol 55:1563CrossRefPubMedGoogle Scholar
  41. Sarkar A et al (2002) Vibrio pathogenicity island and cholera toxin genetic element-associated virulence genes and their expression in non-O1 non-O139 strains of Vibrio cholerae. Infect Immun 70:4735CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shamini G et al (2011) Structural inferences for Cholera toxin mutations in Vibrio cholerae. Bioinformation 6(1):1–9CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sharma A, Chaturvedi AN (2006) Prevalence of virulence genes (ctxA, stn, OmpW and tcpA) among non-O1 Vibrio cholerae isolated from fresh water environment. Int J Hyg Environ Health 209:521CrossRefPubMedGoogle Scholar
  44. Sharma C et al (1998) Molecular analysis of non-O1, non-O139 Vibrio cholerae associated with an unusual upsurge in the incidence of cholera-like disease in Calcutta, India. J Clin Microbiol 36:756PubMedPubMedCentralGoogle Scholar
  45. Shimada T et al (1994) Extended serotyping scheme for Vibrio cholerae. Curr Microbiol 28:175CrossRefGoogle Scholar
  46. Sixma TK et al (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351:371CrossRefPubMedGoogle Scholar
  47. Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622PubMedPubMedCentralGoogle Scholar
  48. Van Heyningen S et al (1974) Cholera toxin: interaction of subunits with ganglioside GM1. Science 183:656CrossRefGoogle Scholar
  49. Vanden BD et al (2007) Clustal W and Clustal X version 2.0. Int J Biochem Cell Biol 39:1771CrossRefGoogle Scholar
  50. Zhang RG et al (1995) The three-dimensional crystal structure of cholera toxin. J Mol Biol 251:563CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pandjassarame Kangueane
    • 1
  1. 1.PondicherryIndia

Personalised recommendations