Fusion Proteins

  • Pandjassarame Kangueane


Fusion proteins in one species have fusion components in yet another species. The evolutionary relationship between fused proteins and fusion components is interesting. A number of such cases have been documented in the literature. The fused proteins in one species mimic important phenomena such as operon-like structures, protein subunit interaction, multiple functionalities, and alternative splicing in another species. These observable facts are discussed using suitable examples. The significance of fusion proteins in molecular evolution is discussed by structures with known fused/unfused architectures and by probing their variability during simulation.


Gene fusion Operon Multiple function Alternative splicing Domain fusion Gene transfer Molecular dynamics Interface area Interface volume Radius of gyration Gap interface Protein subunit interface 


  1. Andersson JO, Doolittle WF et al (2001) Are there bugs in our genome? Science 292:1848–1850CrossRefPubMedGoogle Scholar
  2. Aral B, Schlenzig JS, Liu G et al (1996) Database cloning human delta 1-pyrroline-5-carboxylate synthetase (P5CS) cDNA: a bifunctional enzyme catalyzing the first 2 steps in proline biosynthesis. C R Acad Sci III 319:171–178PubMedGoogle Scholar
  3. Berthonneau E, Mirande M (2000) A gene fusion event in the evolution of aminoacyl-tRNA synthetases. FEBS Lett 470:300–304CrossRefPubMedGoogle Scholar
  4. Brett D, Hanke J, Lehmann G et al (2000) EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett 474:83–86CrossRefPubMedGoogle Scholar
  5. Brodsky G, Barnes T, Bleskan J et al (1997) The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with Down syndrome. Hum Mol Genet 6:2043–2050CrossRefPubMedGoogle Scholar
  6. Ebbole DJ, Zalkin H (1987) Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem 262:8274–8287PubMedGoogle Scholar
  7. Genereux DP, Logsdon JM Jr (2003) Much ado about bacteria-to-vertebrate lateral gene transfer. Trends Genet 19:191–195CrossRefPubMedGoogle Scholar
  8. Haase FC, Beegen H, Allen SH (1984) Propionyl coenzyme A carboxylase of Mycobacterium smegmatis. An electron microscopic study. Eur J Biochem 140:147–151CrossRefPubMedGoogle Scholar
  9. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  10. Kan Z, Rouchka EC, Gish WR, States DJ (2001) Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res 11:889–900CrossRefPubMedPubMedCentralGoogle Scholar
  11. Katzen F, Deshmukh M, Daldal F et al (2002) Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J 21:3960–3969CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kosuge T, Tabata K, Hoshino T (1994) Molecular cloning and sequence analysis of the proBA operon from an extremely thermophilic eubacterium Thermus thermophilus. FEMS Microbiol Lett 123:55–61CrossRefPubMedGoogle Scholar
  13. Lang D, Thoma R, Henn-SAX M et al (2000) Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science 289:1546–1550CrossRefPubMedGoogle Scholar
  14. Long M (2000) A new function evolved from gene fusion. Genome Res 10:1655–1657CrossRefPubMedGoogle Scholar
  15. Marcotte EM, Pellegrini M, Ng HL et al (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285:751–753CrossRefPubMedGoogle Scholar
  16. McCarthy AD, Hardie DG (1984) Fatty acid synthase: an example of protein evolution by gene fusion. Trends Biochem Sci 9:60–63CrossRefGoogle Scholar
  17. Mering CV, Bork P (2002) Teamed up for transcription. Nature 417:797–798CrossRefGoogle Scholar
  18. Mironov AA, Fickett JW, Gelfand MS (1999) Frequent alternative splicing of human genes. Genome Res 9:1288–1293CrossRefPubMedPubMedCentralGoogle Scholar
  19. Perham RN (1975) Self-assembly of biological macromolecules. Philos Trans R Soc Lond Ser B Biol Sci 272:123–136CrossRefGoogle Scholar
  20. Ponting CP (2001) Plagiarized bacterial genes in the human book of life. Trends Genet 17:235–237CrossRefPubMedGoogle Scholar
  21. Reed LJ (1974) Multienzyme complexes. Acc Chem Res 7:40–46CrossRefGoogle Scholar
  22. Salzberg SL, White O, Peterson J et al (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292:1903–1906CrossRefPubMedGoogle Scholar
  23. Truong K, Ikura M (2003) Domain fusion analysis by applying relational algebra to protein sequence and domain databases. BMC Bioinformatics 4:16CrossRefPubMedPubMedCentralGoogle Scholar
  24. Tsoka S, Ouzounis CA (2001) Functional versatility and molecular diversity of the metabolic map of Escherichia coli. Genome Res 11(9):1503–1510CrossRefPubMedPubMedCentralGoogle Scholar
  25. Yanai I, Derti A, DeLisi C (2001) Genes linked by fusion events are generally of the same functional category: a systematic analysis of 30 microbial genomes. Proc Natl Acad Sci U S A 98:7940–7945CrossRefPubMedPubMedCentralGoogle Scholar
  26. Yiting Y, Chaturvedi I, Meow LK et al (2004) Can ends justify the means? Digging deep for human fusion genes of prokaryotic origin. Front Biosci 9:2964–2971CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pandjassarame Kangueane
    • 1
  1. 1.PondicherryIndia

Personalised recommendations