Skip to main content

Platelet-Based Drug Delivery for Cancer Applications

  • Chapter
  • First Online:
Biomechanics in Oncology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1092))

Abstract

Platelets can be considered as the “guardian of hemostasis” where their main function is to maintain vascular integrity. In pathological conditions, the hemostatic role of platelets may be hijacked to stimulate disease progression. In 1865, Armand Trousseau was a pioneer in establishing the platelet-cancer metastasis relationship, which he eventually termed as Trousseau’s Syndrome to describe the deregulation of the hemostasis-associated pathways induced by cancer progression (Varki, Blood. 110(6):1723–9, 2007). Since these early studies, there has been an increase in experimental evidence not only to elucidate the role of platelets in cancer metastasis but also to create novel cancer therapies by targeting the platelet’s impact in metastasis. In this chapter, we discuss the contribution of platelets in facilitating tumor cell transit from the primary tumor to distant metastatic sites as well as novel cancer therapies based on platelet interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki A (2007) Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood 110(6):1723–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li R et al (2014) Presence of intratumural platelets is associated with tumor vessels structure and metastasis. BMC Cancer 14:–167

    Google Scholar 

  3. Wang C, Chen Y, Gao J, Lyu SJ, Zhang Q, Ji X, Yan J, Qiu Q, Zhang Y, Li L, Xu H, Chen S (2015) Low local blood perfusion, high white blood cell and high platelet count are associated with primary tumor growth and lung metastasis in a 4T1 mouse breast cancer metastasis model. Oncol Lett 10:754–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Italiano JE et al (2008) Angiogenesis is regulated by a novel mechanism:pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released. Blood 111(3):1227–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ (2005) Microvesicles derived from active platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760

    Article  CAS  PubMed  Google Scholar 

  6. Liang H et al (2015) MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3. BMC Cancer 14(58):1–13

    CAS  Google Scholar 

  7. Ho-Tin-Noé B, George T, Cifuni SM, Duerschmied D, Wagner DD (2008) Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 68(16):6851–6858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ho-Tin-Noé B, Carbo C, Demers M, Cifuni SM, George T, Wagner DD (2009) Innate immune cells induce hemorrhage in tumors during thrombocytopenia. Am J Pathol 175(4):1699–1708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hu L, Lee M, Campbell W, Perez-Soler R, Karpatkin S (2004) Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood 104(9):2746–2751

    Article  CAS  PubMed  Google Scholar 

  10. Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI, Coomber B, Mackman N, Rack JW (2005) Oncogenic events regulate tissue expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105(4):1734–1741

    Article  CAS  PubMed  Google Scholar 

  11. Kong D, Wang Z, Sarkar SH, Li Y, Banerjee S, Saliganan A, Kim HC, Cher ML, Sarkar FH (2008) Platelet-derived factor D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells 26:1425–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lonsdorf AS, Krämer BF, Fahrleitner M et al (2012) Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets. J Biol Chem 287(3):2168–2178

    Article  CAS  PubMed  Google Scholar 

  14. Li J, King MR (2012) Adhesion receptors as therapeutics targets for circulating tumor cells. Front Oncol 79:1–9

    Google Scholar 

  15. Zhao F, Li L, Guan L, Yang H, Wu C, Liu Y (2014) Roles for GP IIb/IIIa and ανβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett 344:62–73

    Article  CAS  PubMed  Google Scholar 

  16. Pang JH, Coupland LA, Freeman C, Chong BH, Parish C (2015) Activation of tumour cell ECM degradation by thrombin-activated platelet membranes: potentially a P-selectin and GPIIb/IIIa-dependent process. Clin Exp Metastasis 32:495–505

    Article  CAS  PubMed  Google Scholar 

  17. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev 11:512–522

    Article  CAS  Google Scholar 

  18. Mitchell M, King MR (2013) Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol 3(44):1–11

    Google Scholar 

  19. Egan K, Cooke N, Kenny D (2014) Living in shear: platelets protect cancer cells from shear induced damage. Clin Exp Metastasis 31:697–704

    Article  PubMed  Google Scholar 

  20. Nieswandt B, Hafner M, Echtenacher B, Männel DN (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59:1295–1300

    CAS  PubMed  Google Scholar 

  21. Im JH, Fu W, Wang H et al (2004) Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 64:8613–8619

    Article  CAS  PubMed  Google Scholar 

  22. Coupland LA, Chong BH, Parish CR (2012) Platelets and p-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res 72:4662–4671

    Article  CAS  PubMed  Google Scholar 

  23. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Jirousková M, Degen JL (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105(1):178–185

    Article  CAS  PubMed  Google Scholar 

  24. Zheng S, Shen J, Jiao Y, Zhang C, Wei M, Hao S, Zeng X (2009) Platelets and fibrinogen facilitate each other in protecting tumor cells from natural killer cytotoxicity. Cancer Sci 100(5):859–865

    Article  CAS  PubMed  Google Scholar 

  25. Kopp HG, Placke T, Salih HR (2009) Platelet-derived transforming growth factor-b down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69(19):7775–7783

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Han Y, Guo Q, Zhang M, Cao X (2008) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-b1. J Immunol 189:240–249

    Google Scholar 

  27. Placke T, Salih HR, Kopp HG (2012) GITR ligand provided by thrombopoietic cells inhibits NK cell antitumor activity. J Immunol 189:154–160

    Article  CAS  PubMed  Google Scholar 

  28. Liu B, Li Z, Mahesh SP, Pantanelli S, Hwang FS, Siu WO, Nussenblatt RB (2008) Glucocorticoid-induced tumor necrosis factor receptor negatively regulates activation of human primary natural killer (NK) cells by blocking proliferative signals and increasing NK cell apoptosis. J Biol Chem 283(13):8202–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pilch J, Habermann R, Felding-Habermann B (2002) Unique ability of integrin ανβ3 to support tumor cell arrest under dynamic flow conditions. J Biol Chem 277(24):21930–21938

    Article  CAS  PubMed  Google Scholar 

  30. Felding-Habermann B, O’Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, Hughes PE, Pampori N, Shattil J, Seven A, Mueller BM (2001) Integrin activation controls metastasis in human breast cancer. PNAS 98(4):1853–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCarty OJT, Mousa SA, Bray PF, Konstantopoulos K (2000) Immobilized platelets support human colon carcinoma cell tethering, rolling and firm adhesion under dynamic flow conditions. Blood 96(5):1789–1797

    CAS  PubMed  Google Scholar 

  32. Palumbo JS, Kombrick KW, Drew AF, Grimes TS, Kiser JH, Degen JL, Bugge TH (2000) Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 96(10):3302–3309

    CAS  PubMed  Google Scholar 

  33. Stone JP, Wagner DD (1992) P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J Clin Invest 92:804–813

    Article  Google Scholar 

  34. Jain S, Zuka M, Liu J, Russell S, Dent J, Guerrero JA, Forsyth J, Maruszak B, Gatner TK, Habermann BH, Ware J (2007) Platelet glycoprotein Ibα supports experimental lung metastasis. Proc Natl Acad Sci U S A 104(21):9024–9028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Erpenbeck L, Nieswandt B, Schön M, Pozgajova M, Schön MP (2010) Inhibition of platelet GPIbα and promotion of melanoma metastasis. J Invest Dermatol 130:576–586

    Article  CAS  PubMed  Google Scholar 

  36. Jain S, Russell S, Ware J (2009) Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost 7:1713–1717

    Article  CAS  PubMed  Google Scholar 

  37. Bauer AT, Suckau J, Frank K, Desch A, Goertz L, Wagner AH, Hacker M, Goerge T, Umansky L, Beckhove P, Utikal J, Gorzelanny C, Diaz-Valdes N, Umansky V, Schneider SW (2015) Von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood 125(20):3153–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kato Y, Fujita N, Kunita A, Sato S, Kaneko M, Osawa M, Tsuruo T (2003) Molecular identification of aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol Chem 278(51):51599–51605

    Article  CAS  PubMed  Google Scholar 

  39. Takagi S, Sato S, Ohhara T, Koike S, Mishima Y, Hatake K, Fujita N (2013) Platelets promote tumor growth and metastasis via direct interaction between aggrus/podoplanin and CLEC-2. PLoS One 8(8):1–11

    Article  CAS  Google Scholar 

  40. Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108:2369–2379

    CAS  PubMed  Google Scholar 

  41. Amirkhosravi A, Amaya M, Siddiqui F, Biggerstaff JP, Meyer TV, Francis JL (1999) Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis. Platelets 10:285–292

    Article  CAS  PubMed  Google Scholar 

  42. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nature 8(11):1223–1234

    CAS  Google Scholar 

  43. Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S (2013) Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24:130–137

    Article  CAS  PubMed  Google Scholar 

  44. Jin DK et al (2006) Cytokine-mediated deployment of SDF-1 induces re-vascularization through recruitment of CXCR4+hemangiocytes. Nat Med 12(5):557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Labelle M, Begun S, Hynes RO (2014) Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 111(30):E3053–E3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Läubli H, Spanaus KS, Borsig L (2009) Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood 114(20):4583–4591

    Article  PubMed  CAS  Google Scholar 

  47. Kaplan RN et al (2005) VEGFR1-positive hematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(8):820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Massberg S et al (2006) Platelets secrete stromal cell-derived factor 1α and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med 203(5):1221–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Müller A et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  Google Scholar 

  50. Gil-Bernabé AM, Ferjančič Š et al (2012) Recruitment of monocytes/microphages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119(13):3164–3175

    Article  PubMed  CAS  Google Scholar 

  51. Lee A, Levine M (2003) Venous thromboembolism and cancer: risks and outcomes. Circulation 107:I17–I21

    Article  PubMed  CAS  Google Scholar 

  52. Hirsh J, Dalen J, Anderson D et al (1998) Oral anticoagulants. Chest 113:445S–469S

    Article  Google Scholar 

  53. Zacharski LR, Henderson WG, Rickles FR, Forman WB, Cornell CJ Jr, Forcier RJ, Edwards RL, Headley E, Kim SH, O'Donnell JF et al (1984) Effect of warfarin anticoagulation on survival in carcinoma of the lung, colon, head and neck, and prostate. Cancer 53(10):2046–2052

    Article  CAS  PubMed  Google Scholar 

  54. Levine M, Hirsh J, Gent M et al (1994) Double-blind randomised trial of very-low-dose warfarin for prevention of thromboembolism in stage IV breast cancer. Lancet 343(8902):886–889

    Article  CAS  PubMed  Google Scholar 

  55. Schulman S, Lindmarker P (2000) Incidence of cancer after prophylaxis with warfarin against recurrent venous thromboembolism. N Engl J Med 342:1953–1958

    Article  CAS  PubMed  Google Scholar 

  56. Hirsh J, Warkentin T, Shaughnessy S et al (2001) Heparin and low-molecular-weight heparin mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 119(1):64S–94S

    Article  CAS  PubMed  Google Scholar 

  57. Lee A, Levine M, Baker R et al (2003) Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med 349:146–153

    Article  CAS  PubMed  Google Scholar 

  58. Kakkar A, Levine M, Kadziola Z et al (2004) Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol 22(10):1944–1948

    Article  CAS  PubMed  Google Scholar 

  59. Icli F, Akbulut H, Utkan G et al (2007) Low molecular weight heparin (LMWH) increases the efficacy of cisplatinum plus gemcitabine combination in advanced pancreatic cancer. J Surg Oncol 95:507–512

    Article  CAS  PubMed  Google Scholar 

  60. Altinbas M, Coskun H, Er O et al (2004) A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J Thromb Haemost 2(8):1266–1271

    Article  CAS  PubMed  Google Scholar 

  61. Rothwell P, Wilson M, Price J et al (2012) Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379(9826):1591–1601

    Article  CAS  PubMed  Google Scholar 

  62. Holmes C, Ramos-Nino M, Littenberg B (2010) An association between anti-platelet drug use and reduced cancer prevalence in diabetic patients: results from the Vermont Diabetes Information System Study. BMC Cancer 10:289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Crowther M, Crowther MA (2015) Antidotes for novel oral anticoagulants: current status and future potential. Artherioscler Thromb Vasc Biol 35(8):1736–1745

    Article  CAS  Google Scholar 

  64. van Leeuwen RWF, Swart EL, Boven E et al (2011) Potential drug interactions in cancer therapy: a prevalence study using an advanced screening method. Ann Oncol 22(10):2334–2341

    Article  PubMed  Google Scholar 

  65. Heldin CH (2013) Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal 11:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kawahara R, Kennedy B, Deuel T (1987) Monoclonal antibody C3.1 is a platelet derived growth factor (PDGF) antagonist. Biochem Biophys Res Commun 147(2):839–845

    Article  CAS  PubMed  Google Scholar 

  67. Hawthorne T, Giot L, Blake L et al (2008) Int J Clin Pharmacol Ther 46(5):236–244

    Article  CAS  PubMed  Google Scholar 

  68. Vassbotn F, Langeland N, Hagen I et al (1990) A monoclonal antibody against PDGF B-chain inhibits PDGF-induced DNA synthesis in C3H fibroblasts and prevents binding of PDGF to its receptor. Mol Cell Res 1054(2):246–249

    CAS  Google Scholar 

  69. Shen J, Vil MD, Prewett M et al (2009) Development of a fully human anti-PDGFRβ antibody that suppresses growth of human tumor xenografts and enhances antitumor activity of an anti-VEGFR2 antibody. Neoplasia 11(6):594–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Loizos N, Xu Y, Huber J et al (2005) Targeting the platelet-derived growth factor receptor α with a neutralizing human monoclonal antibody inhibits the growth of tumor xenografts: implications as a potential therapeutic target. Mol Cancer Ther 4(3):369–379

    CAS  PubMed  Google Scholar 

  71. Jayson G, Parker G, Mullamitha S et al (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab’, leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 5:973–981

    Article  CAS  Google Scholar 

  72. Trikha M, Nakada M (2002) Platelets and cancer: implications for antiangiogenic therapy. Semin Thromb Hemost 28(1):39–44

    Article  CAS  PubMed  Google Scholar 

  73. Metcalfe P (2004) Platelet antigens and antibody detection. Vox Sang 87:S82–S86

    Article  CAS  Google Scholar 

  74. Amirkhosravi A, Mousa SA, Amaya M et al (2003) Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost 90(3):549–554

    CAS  PubMed  Google Scholar 

  75. Coller B, Peerschke E, Scudder L et al (1983) A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa. J Clin Investig 72(1):325–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Amirkhosravi A, Amaya M, Siddiqui F et al (2009) Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis. Platelets 10(5):285–292

    Article  Google Scholar 

  77. Dixit V, Haverstick D, O’Rourke K et al (1985) Inhibition of platelet aggregation by a monoclonal antibody against human fibronectin. PNAS 82:3844–3848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jacquemin M, Saint-Remy JM (2004) The use of antibodies to coagulation factors for anticoagulant therapy. Curr Med Chem 11:2291–2296

    Article  CAS  PubMed  Google Scholar 

  79. Momi S, Falcinelli E, Giannini S et al (2009) Loss of matrix metalloproteinase 2 in platelets reduces arterial thrombosis in vivo. J Exp Med 206(11):2365–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sarkar S, Alam MA, Shaw J et al (2013) Drug delivery using platelet cancer cell interaction. Pharm Res 30(11):2785–2794

    Article  CAS  PubMed  Google Scholar 

  81. Dai L, Gu N, Chen BA et al (2016) Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants. Oncotarget 7(16):21076–21090

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shamay Y, Elkabets M, Li H et al (2016) P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Sci Transl Med 8(345):345ra87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Modery C, Ravikumar M, Won T et al (2011) Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery. Biomaterials 32(35):9504–9514

    Article  CAS  PubMed  Google Scholar 

  84. Srinivasan R, Marchant R, Gupta AS (2010) In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J Biomed Mater Res 93A(3):1004–1015

    CAS  Google Scholar 

  85. Li J, Ai Y, Wang L et al (2016) Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 76:52–65

    Article  CAS  PubMed  Google Scholar 

  86. Li J, Sharkey C, Wun B et al (2016) Genetic engineering of platelets to neutralize circulating tumor cells. J Control Release 228:38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu Q, Sun W, Qian C et al (2015) Anticancer platelet-mimicking nanovehicles. Adv Mater 27(44):7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hu CM, Fang R, Wang KC et al (2015) Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Modery-Pawlowski C, Master A, Pan V et al (2013) A platelet-mimetic paradigm for metastasis-targeted nanomedicine platforms. Biomacromolecules 14(3):910–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Anselmo A, Modery-Pawlowski C, Menegatti S et al (2014) Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 8(11):11243–11253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Doshi N, Orje J, Molins B et al (2012) Platelet mimetic particles for targeting thrombi in flowing blood. Adv Mater 24(28):3864–3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shieh AC (2011) Biomechanics forces shape the microenvironment. Ann Biomed Eng 39(5):1379–1389

    Article  PubMed  Google Scholar 

  93. Melandrino A, Kamm RD, Moeendarbary E (2018) In vitro modeling of mechanics in cancer metastasis. ACS Biomater Sci Eng 4(2):294–301

    Article  CAS  Google Scholar 

  94. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  PubMed  Google Scholar 

  96. Kee MF, Myers DR, Sakurai Y, Lam WA, Qiu Y (2015) Platelet mechanosensing of collagen matrices. PLoS One 10(4):e0126624. https://doi.org/10.1371/journal.pone.0126624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rofstad EK, Galappathi K, Mathiesen BS (2014) Tumor interstitial fluid pressure-a link between tumor hypoxia, microvascular density and lymph node metastasis. Neoplasia 16(7):586–594

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nguyen T, Palankar R, Bui V et al (2016) Rupture forces among human blood platelets at different degrees of activation. Sci Rep 6:25402

    Google Scholar 

  99. Litvinov R, Benneth JS, Weisel JW, Shuman H (2005) Multi-step fibrinogen binding to the integrin αIIbβ3 detected using force spectroscopy. Biophys J 89:2824–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li F, Redick SD et al (2003) Force measurements of the α5β1 integrin-fibronectin interaction. Biophys J 84:1252–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Litvinov R, Barsegov V et al (2011) Dissociation of bimolecular αIIbβ3-fibrinogen complex under a constant tensile force. Biophys J 100:165–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiang X et al (2017) Microfluidic isolation of platelet-covered circulating tumor cells. Lab Chip 17:3498–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kasier-Friede A, Ruggeri ZM, Shattil SJ (2010) Role for ADAP in shear flow-induced platelet mechanotransduction. Blood 115(11):2274–2282

    Article  CAS  Google Scholar 

  104. Lawler K, Maede G et al (2004) Shear stress modulates the interaction of platelet-secreted matrix proteins with tumor cells through the integrin ανβ3. Am J Phys 287:C1320–C1327

    Article  CAS  Google Scholar 

  105. Medina C, Harmon S, Inkielewicz I et al (2012) Differential inhibition of tumour cell-induced platelet aggregation by the nicotinate aspirin prodrug (ST0702) and aspirin. Br J Pharmacol 166(3):938–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Borsig L, Wong R, Feramiso J et al (2000) Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. PNAS 98(6):3352–3357

    Article  Google Scholar 

  107. Reinmuth N, Liu W, Ahmad SA et al (2003) αvβ3 integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res 63(9):2079–2087

    CAS  PubMed  Google Scholar 

  108. Felding-Habermann B, O’Toole TE, Smith JW et al (2000) Integrin activation controls metastasis in human breast cancer. PNAS 98(4):1853–1858

    Article  Google Scholar 

  109. Kim YJ, Borsig L, Varki N et al (1998) P-selectin deficiency attenuates tumor growth and metastasis. PNAS 95(16):9325–9330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ravikumar M, Modery CL, Won TL et al (2012) Peptide-decorated liposomes promote arrest and aggregation of activated platelets under flow on vascular injury relevant protein surfaces in vitro. Biomacromolecules 13(5):1495–1502

    Article  CAS  PubMed  Google Scholar 

  111. Nishiya T, Kaino M, Murata M et al (2002) Reconstitution of adhesive properties of human platelets in liposomes carrying both recombinant glycoproteins Ia/IIa and Iba under flow conditions: specific synergy of receptor–ligand interactions. Blood 100(1):136–142

    Article  CAS  PubMed  Google Scholar 

  112. Merkel T, Jones S, Herlihy K et al (2010) Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. PNAS 108(2):586–591

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortiz-Otero, N., Mohamed, Z., King, M.R. (2018). Platelet-Based Drug Delivery for Cancer Applications. In: Dong, C., Zahir, N., Konstantopoulos, K. (eds) Biomechanics in Oncology. Advances in Experimental Medicine and Biology, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-319-95294-9_12

Download citation

Publish with us

Policies and ethics