Advertisement

The National Cancer Institute Investment in Biomechanics in Oncology Research

  • Anthony Dickherber
  • Shannon K. Hughes
  • Nastaran ZahirEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1092)

Abstract

The qualitative description of tumors feeling stiffer than surrounding normal tissue has been long appreciated in the clinical setting. These empirical observations have been corroborated by the precise measurement and characterization of mechanical properties of cancerous tissues. Much of the advancement in our understanding of mechanics in oncology has been enabled by the development of innovative technologies designed to probe cells and tissues as well as integrative software analysis tools that facilitate biological interpretation and generation of testable hypotheses. While some mechanics in oncology research has been investigator-initiated and supported by the National Cancer Institute (NCI), several NCI programs described herein have helped to foster the growth of the burgeoning field. Programs highlighted in this chapter include Innovative Molecular Analysis Technologies (IMAT), Physical Sciences–Oncology Network (PS-ON), Tumor Microenvironment Network (TMEN), Integrative Cancer Biology Program (ICBP), and the Cancer Systems Biology Consortium (CSBC). This chapter showcases the scientific contributions of these programs to the field of biomechanics in oncology.

Keywords

National Cancer Institute National Institutes of Health Government programs Funding Physical Sciences-Oncology Network Innovative Molecular Analysis Technologies Program Mechanobiology  

References

  1. 1.
    Rueden CT et al (2009) Nonlinear optical microscopy and computational analysis of intrinsic signatures in breast cancer. Conf Proc IEEE Eng Med Biol Soc 2009:4077–4080PubMedPubMedCentralGoogle Scholar
  2. 2.
    Provenzano PP, Eliceiri KW, Keely PJ (2009) Shining new light on 3D cell motility and the metastatic process. Trends Cell Biol 19(11):638–648CrossRefGoogle Scholar
  3. 3.
    Szulczewski JM et al (2016) In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging. Sci Rep 6:25086CrossRefGoogle Scholar
  4. 4.
    Wu PH et al (2012) High-throughput ballistic injection nanorheology to measure cell mechanics. Nat Protoc 7(1):155–170CrossRefGoogle Scholar
  5. 5.
    Zahir N (2018) The NCI physical sciences - oncology network. Trends Cancer 4(4):e1–e6 CrossRefGoogle Scholar
  6. 6.
    Bakhoum SF et al (2018) Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553(7689):467–472CrossRefGoogle Scholar
  7. 7.
    Cao X et al (2016) A Chemomechanical model for nuclear morphology and stresses during cell transendothelial migration. Biophys J 111(7): 1541–1552CrossRefGoogle Scholar
  8. 8.
    Denais CM et al (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352(6283):353–358CrossRefGoogle Scholar
  9. 9.
    Mitchell MJ et al (2015) Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress. Am J Physiol Cell Physiol 309(11):C736–C746CrossRefGoogle Scholar
  10. 10.
    Mekhdjian AH et al (2017) Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol Biol Cell 28(11):1467–1488CrossRefGoogle Scholar
  11. 11.
    Miroshnikova YA et al (2017) alpha5beta1-Integrin promotes tension-dependent mammary epithelial cell invasion by engaging the fibronectin synergy site. Mol Biol Cell 28(22):2958–2977CrossRefGoogle Scholar
  12. 12.
    Hall MS et al (2016) Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc Natl Acad Sci U S A 113(49): 14043–14048CrossRefGoogle Scholar
  13. 13.
    Seo BR et al (2015) Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med 7(301):301ra130CrossRefGoogle Scholar
  14. 14.
    Wang K et al (2015) Stiffening and unfolding of early deposited-fibronectin increase proangiogenic factor secretion by breast cancer-associated stromal cells. Biomaterials 54:63–71CrossRefGoogle Scholar
  15. 15.
    Sewell-Loftin MK et al (2017) Cancer-associated fibroblasts support vascular growth through mechanical force. Sci Rep 7(1):12574CrossRefGoogle Scholar
  16. 16.
    Ahmadzadeh H et al (2017) Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proc Natl Acad Sci U S A 114(9):E1617–e1626CrossRefGoogle Scholar
  17. 17.
    Jimenez Valencia AM et al (2015) Collective cancer cell invasion induced by coordinated contractile stresses. Oncotarget 6(41):43438–43451PubMedGoogle Scholar
  18. 18.
    Kim DH et al (2015) Volume regulation and shape bifurcation in the cell nucleus. J Cell Sci 128(18): 3375–3385CrossRefGoogle Scholar
  19. 19.
    Kim DH, Wirtz D (2015) Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials 48:161–172CrossRefGoogle Scholar
  20. 20.
    Shiraishi T et al (2015) Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget 6(1):130–143CrossRefGoogle Scholar
  21. 21.
    Gilkes DM et al (2014) Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc Natl Acad Sci U S A 111(3):E384–E393CrossRefGoogle Scholar
  22. 22.
    Wu M et al (2014) The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems. J Theor Biol 355:194–207CrossRefGoogle Scholar
  23. 23.
    Gampa G et al (2017) Drug delivery to melanoma brain metastases: can current challenges lead to new opportunities? Pharmacol Res 123:10–25CrossRefGoogle Scholar
  24. 24.
    Stevens MM et al (2016) Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate. Nat Biotechnol 34(11):1161–1167CrossRefGoogle Scholar
  25. 25.
    Shaw Bagnall J et al (2015) Deformability of tumor cells versus blood cells. Sci Rep 5:18542CrossRefGoogle Scholar
  26. 26.
    Byun S et al (2013) Characterizing deformability and surface friction of cancer cells. Proc Natl Acad Sci U S A 110(19):7580–7585CrossRefGoogle Scholar
  27. 27.
    Klank RL et al (2017) Biphasic dependence of glioma survival and cell migration on CD44 expression level. Cell Rep 18(1):23–31CrossRefGoogle Scholar
  28. 28.
    Bangasser BL et al (2017) Shifting the optimal stiffness for cell migration. Nat Commun 8:15313CrossRefGoogle Scholar
  29. 29.
    Ray A et al (2017) Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration. Nat Commun 8:14923CrossRefGoogle Scholar
  30. 30.
    Banigan EJ, Stephens AD, Marko JF (2017) Mechanics and buckling of biopolymeric shells and cell nuclei. Biophys J 113(8):1654–1663CrossRefGoogle Scholar
  31. 31.
    Tocco VJ et al (2018) The nucleus is irreversibly shaped by motion of cell boundaries in cancer and non-cancer cells. J Cell Physiol 233(2):1446–1454CrossRefGoogle Scholar
  32. 32.
    Stephens AD et al (2018) Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol Biol Cell 29(2):220–233CrossRefGoogle Scholar
  33. 33.
    Pfeifer CR et al (2017) Genome variation across cancers scales with tissue stiffness - an invasion-mutation mechanism and implications for immune cell infiltration. Curr Opin Syst Biol 2:103–114CrossRefGoogle Scholar
  34. 34.
    Bennett RR et al (2017) Elastic-fluid model for DNA damage and mutation from nuclear fluid segregation due to cell migration. Biophys J 112(11):2271–2279CrossRefGoogle Scholar
  35. 35.
    Irianto J et al (2016) Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol Biol Cell 27(25):4011–4020CrossRefGoogle Scholar
  36. 36.
    Zhang J et al (2017) Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus. Lab Chip 17(4):663–670CrossRefGoogle Scholar
  37. 37.
    Chen Y et al (2017) Receptor-mediated cell mechanosensing. Mol Biol Cell 28(23):3134–3155CrossRefGoogle Scholar
  38. 38.
    Park JA et al (2016) Collective migration and cell jamming in asthma, cancer and development. J Cell Sci 129(18):3375–3383CrossRefGoogle Scholar
  39. 39.
    Levental KR et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906 CrossRefGoogle Scholar
  40. 40.
    Provenzano PP et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38CrossRefGoogle Scholar
  41. 41.
    Conklin MW et al (2011) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178(3):1221–1232CrossRefGoogle Scholar
  42. 42.
    Piotrowski-Daspit AS et al (2017) Dynamics of tissue-induced alignment of fibrous extracellular matrix. Biophys J 113(3):702–713CrossRefGoogle Scholar
  43. 43.
    Rubashkin MG et al (2014) Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res 74(17): 4597–4611CrossRefGoogle Scholar
  44. 44.
    Ruppender NS et al (2010) Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells. PLoS One 5(11):e15451CrossRefGoogle Scholar
  45. 45.
    Johnson RW et al (2014) Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer. Clin Exp Metastasis 31(8):945–959CrossRefGoogle Scholar
  46. 46.
    Jansen LE et al (2015) Mechanics of intact bone marrow. J Mech Behav Biomed Mater 50:299–307CrossRefGoogle Scholar
  47. 47.
    Ghajar CM et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807–817CrossRefGoogle Scholar
  48. 48.
    Schwartz AD et al (2017) A biomaterial screening approach reveals microenvironmental mechanisms of drug resistance. Integr Biol (Camb) 9(12): 912–924CrossRefGoogle Scholar
  49. 49.
    Tranquillo RT, Lauffenburger DA, Zigmond SH (1988) A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J Cell Biol 106(2):303–309CrossRefGoogle Scholar
  50. 50.
    Palecek SP et al (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616): 537–540CrossRefGoogle Scholar
  51. 51.
    Zaman MH et al (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A 103(29):10889–10894CrossRefGoogle Scholar
  52. 52.
    Mak M et al (2015) Multiscale mechanobiology: computational models for integrating molecules to multicellular systems. Integr Biol (Camb) 7(10):1093–1108CrossRefGoogle Scholar
  53. 53.
    Park J et al (2017) Mechanochemical feedback underlies coexistence of qualitatively distinct cell polarity patterns within diverse cell populations. Proc Natl Acad Sci U S A 114(28):E5750–e5759CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Anthony Dickherber
    • 1
  • Shannon K. Hughes
    • 2
  • Nastaran Zahir
    • 2
    Email author
  1. 1.Center for Strategic Scientific InitiativesNational Cancer Institute, National Institutes of HealthBethesdaUSA
  2. 2.Division of Cancer BiologyNational Cancer Institute, National Institutes of HealthRockvilleUSA

Personalised recommendations