Advertisement

Pose Estimation Based on Monocular Visual Odometry and Lane Detection for Intelligent Vehicles

  • Juan Galarza
  • Esteban Pérez
  • Esteban Serrano
  • Andrés Tapia
  • Wilbert G. Aguilar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)

Abstract

A fundamental element for the determination of the position (pose) of an object is to be able to determine the rotation and translation of the same in space. Visual odometry is the process of determining the location and orientation of a camera by analyzing a sequence of images. The algorithm allowed tracing the trajectory of a body in an open environment by comparing the mapping of points of a sequence of images to determine the variation of translation or rotation. The use of Lane detection is proposed to feed back the Visual Odometry algorithm, allowing more robust results. The algorithm was programmed on OpenCV 3.0 in Python 2.7 and was run on Ubuntu 16.04. The algorithm allowed tracing the trajectory of a body in an open environment by comparing the mapping of points of a sequence of images to determine the variation of translation or rotation. With the satisfactory results obtained, the development of a computational platform capable of determining the position of a vehicle in the space for assistance in parking is projected.

Keywords

Monocular visual odometry Lane detection Hough transform Egomotion Pose 

References

  1. 1.
    Scaramuzza, D., Fraundorfer, F., Siegwart, R.: Real-time monocular visual odometry for on-road vehicles with 1-point RANSAC. In: IEEE International Conference on Robotics and Automation, pp. 4293–4299 (2009)Google Scholar
  2. 2.
    Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: Fast semi-direct monocular visual odometry. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 15–22 (2014)Google Scholar
  3. 3.
    Tardif, J.-P., Pavlidis, Y., Daniilidis, K.: Monocular visual odometry in urban environments using an omnidirectional camera. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2531–2538 (2008)Google Scholar
  4. 4.
    Scaramuzza, D., Siegwart, R.: Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Trans. Robot. 24(5), 1015–1026 (2008)CrossRefGoogle Scholar
  5. 5.
    Saha, A., Das Roy, D., Alam, T., Deb, K.: Automated road lane detection for intelligent vehicles. Glob. J. Comput. Sci. Technol., 12(6) (2012)Google Scholar
  6. 6.
    Kumar, A.M., Simon, P.: Review of lane detection and tracking algorithms in advanced driver assistance system. Int. J. Comput. Sci. Inf. Technol. 7(4), 65–78 (2015)Google Scholar
  7. 7.
    Kim, Z.: Robust lane detection and tracking in challenging scenerios. IEEE Trans. Intell. Transp. Syst. 9(1), 16–26 (2008)CrossRefGoogle Scholar
  8. 8.
    Kaur, G., Kumar, D.: Lane detection techniques: a review. Int. J. Comput. Appl. 112(10), 975–8887 (2015)Google Scholar
  9. 9.
    Bar Hillel, A., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: a survey. Mach. Vis. Appl. 25(3), 727–745 (2014)CrossRefGoogle Scholar
  10. 10.
    Somasundaram, G.: Lane change detection and tracking for a safe-lane approach in real time vision based navigation systems. Ccsea 2011, 345–361 (2011)Google Scholar
  11. 11.
    Scaramuzza, D., Fraundorfer, F.: Tutorial: visual odometry. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)CrossRefGoogle Scholar
  12. 12.
    Warren, R.: The perception of egomotion. J. Exp. Psychol. Hum. Percept. Perform. 2(3), 448–456 (1976)CrossRefGoogle Scholar
  13. 13.
    Space, T.H.: Line detection by hough transformation. Transformation 2, 2–8 (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Juan Galarza
    • 1
  • Esteban Pérez
    • 1
  • Esteban Serrano
    • 1
  • Andrés Tapia
    • 1
  • Wilbert G. Aguilar
    • 2
    • 3
  1. 1.DECEM DepartmentUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.CICTE Research Center, Universidad de las Fuerzas Armadas ESPESangolquíEcuador
  3. 3.GREC Research GroupUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations