Multi-user Industrial Training and Education Environment

  • Víctor H. AndaluzEmail author
  • Jorge S. SánchezEmail author
  • Carlos R. SánchezEmail author
  • Washington X. QuevedoEmail author
  • José VarelaEmail author
  • José L. MoralesEmail author
  • Giovanny Cuzco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)


Currently, virtual reality is presented as a solution to the difficulties for teaching and training in industrial processes in the technical area, so a virtual environment was developed where trainers, users, teachers and students interact as the case may be to carry out processes in the automotive industry such as engine assembly and car body assembly. By carrying out these processes in a virtual environment, the aim is for users to gain skills and become familiar with the activities to be carried out in real life. The easy usability of accessories and the user-friendliness of the immersion in the virtual environment makes the participants have a good experience and in the future show their interest in continuing to use a virtual environment for training or acquiring new knowledge.


Virtual reality Automotive engineering Unity3D Multipurpose training 



The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia –CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017- 06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GI-ARSI, for the support to develop this work.


  1. 1.
    Niehorster, D.C., Li, L., Lappe, M.: The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. Iperception 8(3), 1–23 (2017)Google Scholar
  2. 2.
    Fernández-Palacios, B.J., Morabito, D., Remondino, F.: Access to complex reality-based 3D models using virtual reality solutions. J. Cult. Herit. 23, 40–48 (2017)CrossRefGoogle Scholar
  3. 3.
    Carfagni, M., et al.: Fast and low cost acquisition and reconstruction system for human hand-wrist-arm anatomy. Procedia Manuf. 11, 1600–1608 (2017)CrossRefGoogle Scholar
  4. 4.
    Jang, S., Vitale, J.M., Jyung, R.W., Black, J.B.: Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Comput. Educ. 106, 150–165 (2017)CrossRefGoogle Scholar
  5. 5.
    Dini, G., Mura, M.D.: Application of augmented reality techniques in through-life engineering services. Procedia CIRP 38, 14–23 (2015)CrossRefGoogle Scholar
  6. 6.
    Berg, L.P., Vance, J.M.: Industry use of virtual reality in product design and manufacturing: a survey. Virtual Real. 21(1), 1–17 (2017)CrossRefGoogle Scholar
  7. 7.
    Lawson, G., Salanitri, D., Waterfield, B.: Future directions for the development of virtual reality within an automotive manufacturer. Appl. Ergon. 53, 323–330 (2016)CrossRefGoogle Scholar
  8. 8.
    Borsci, S., Lawson, G., Broome, S.: Empirical evidence, evaluation criteria and challenges for the effectiveness of virtual and mixed reality tools for training operators of car service maintenance. Comput. Ind. 67, 17–26 (2015)CrossRefGoogle Scholar
  9. 9.
    Ortiz, J.S., Sánchez, J.S., Velasco, P.M., Sánchez, C.R., Quevedo, W.X., Zambrano, V.D., Arteaga, O., Andaluz, V.H.: Teaching-learning process through VR applied to automotive engineering. In: Proceedings of the 2017 9th International Conference on Education Technology and Computers, pp. 36–40. ACM, December 2017Google Scholar
  10. 10.
    Stratos, A., Loukas, R., Dimitris, M., Konstantinos, G., Dimitris, M., George, C.: A virtual reality application to attract young talents to manufacturing. Procedia CIRP 57, 134–139 (2016)CrossRefGoogle Scholar
  11. 11.
    Rüßmann, M., et al.: Industry 4.0. The Future of Productivity and Growth in Manufacturing. Boston. Consulting Group, pp. 1–5, April 2015Google Scholar
  12. 12.
    Doshi, A., Smith, R.T., Thomas, B.H., Bouras, C.: Use of projector based augmented reality to improve manual spot-welding precision and accuracy for automotive manufacturing. Int. J. Adv. Manuf. Technol. 89(5–8), 1279–1293 (2017)CrossRefGoogle Scholar
  13. 13.
    Quevedo, W.X., et al.: Virtual reality system for training in automotive mechanics. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 185–198. Springer, Cham (2017). Scholar
  14. 14.
    Mårdberg, P., Yan, Y., Bohlin, R., Delfs, N., Gustafsson, S., Carlson, J.S.: Controller hierarchies for efficient virtual ergonomic assessments of manual assembly sequences. Procedia CIRP 44, 435–440 (2016)CrossRefGoogle Scholar
  15. 15.
    Purschke, F., Schulze, M., Zimmermann, P.: Virtual reality-new methods for improving and accelerating the development process in vehicle styling and design. In: Computer Graphics International, pp. 789–797 (1998)Google Scholar
  16. 16.
    Abele, E., Reinhart, G.: Zukunft der Produktion [Future of Production]. Carl Hanser, Munich (2011)CrossRefGoogle Scholar
  17. 17.
    Adolph, S., Tisch, M., Metternich, J.: Challenges and approaches to competency development for future production. J. Int. Sci. Publ. – Educ. Altern. 12, 1001–1010 (2014)Google Scholar
  18. 18.
    Moody, J.A.O., Alonso, R.E.S., Barbosa, J.J.G., Morales, G.R.: Virtual laboratories for training in industrial robotics. IEEE Lat. Am. Trans. 14, 665–672 (2016)CrossRefGoogle Scholar
  19. 19.
    Cáceres, C.A., Amaya, D.: Desarrollo e interacción de un laboratorio virtual asistido y controlado por PLC. Entre Cienc. Ing. 10(19), 9–15 (2016)Google Scholar
  20. 20.
    Sauro, J., Lewis, J.R.: When designing usability questionnaires, does it hurt to be positive? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2215–2224. ACM, May 2011Google Scholar
  21. 21.
    Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22, 55 (1932)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univeridad de las Fuerzas Armads ESPESangolquíEcuador
  2. 2.Escuela Superior Politécnica de ChimborazoRiobambaEcuador
  3. 3.Universidad Nacional de ChimborazoRiobambaEcuador

Personalised recommendations