Virtual Training for Industrial Automation Processes Through Pneumatic Controls

  • Jessica S. OrtizEmail author
  • Jorge S. SánchezEmail author
  • Paola M. VelascoEmail author
  • Washington X. QuevedoEmail author
  • Christian P. CarvajalEmail author
  • Vicente MoralesEmail author
  • Paulina AyalaEmail author
  • Víctor H. AndaluzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)


This work presents the implementation of virtual environments oriented to managing pneumatic controls applied to industrial processes in order to strengthen training and teaching-learning processes. The implemented application enables the multi-user immersion and interaction with the aim to accomplish predefined tasks to be developed within lab environments and virtualized sceneries for industrial processes. Obtained results show how easy it is to interact with the proposed multi-user environment.


Virtual Reality Training Capacitation Industrial processes Multi-user 



The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia – CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GIARSI, for the support to develop this paper.


  1. 1.
    Bakir, N.: Technology and teacher education: a brief glimpse of the research and practice that have shaped the field. TechTrends 60(1), 21–29 (2016)CrossRefGoogle Scholar
  2. 2.
    Holland, J., Holland, J.: Implications of shifting technology in education. TechTrends 58, 16–25 (2014)CrossRefGoogle Scholar
  3. 3.
    Zovko, M.E., John, D.: Humanism vs. competency: traditional and contemporary models of education, pp. 1–11 (2017)CrossRefGoogle Scholar
  4. 4.
    Kang-Ning, Z., Shi-Min, S., Hai, Y.: College teaching quality evaluation based on system dynamics model. In: MATEC Web of Conferences, vol. 61 (2016)Google Scholar
  5. 5.
    Boekaerts, M.: Engagement as an inherent aspect of the learning process. Learn. Instr. 43, 76–83 (2016)CrossRefGoogle Scholar
  6. 6.
    Park, D., Dosoon, K., Changyu, H.: NCS academic achievement and learning transfer ARCS motivation theory in ICT in the field of environmental education through interactive and immersive learning. J. Korea Soc. Digit. Ind. Inf. Manag. 11(3), 179–200 (2015)Google Scholar
  7. 7.
    Majumdar, S.: Emerging trends in ICT for education & training. Gen. Asia Pacific Reg. IVETA (2015)Google Scholar
  8. 8.
    Kaware, S.S., Sunil, K.S.: ICT application in education: an overview. Int. J. Multidiscip. Approach Stud. 2(1), 25–32 (2015)Google Scholar
  9. 9.
    Mihai, A., Andronie, M.: Information and communication technologies (ICT) used for education and training. Contemp. Read. Law Soc. Justice 6(1), 378 (2014)Google Scholar
  10. 10.
    Freina, L., Ott, M.: A literature review on immersive virtual reality in education: state of the art and perspectives. In: The International Scientific Conference eLearning and Software for Education, vol. 1. “Carol I” National Defence University (2015)Google Scholar
  11. 11.
    Burkle, M., Michael M.: Virtual learning: videogames and virtual reality in education. In: Virtual and Augmented Reality: Concepts, Methodologies, Tools, and Applications, pp. 1067–1087. IGI Global (2018)Google Scholar
  12. 12.
    Andaluz, V.H., Castillo-Carrión, D., Miranda, R.J., Alulema, J.C.: Virtual reality applied to industrial processes. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 59–74. Springer, Cham (2017). Scholar
  13. 13.
    Gavish, N., Gutiérrez, T., Webel, S., Rodríguez, J., Peveri, M., Bockholt, U., Tecchia, F.: Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact. Learn. Environ. 23(6), 778–798 (2015)CrossRefGoogle Scholar
  14. 14.
    Ortiz, J.S., Sánchez, J.S., Velasco, P.M., Sánchez, C.R., Quevedo, W.X., Zambrano, V.D., Arteaga, O., Andaluz, V.H.: Teaching-learning process through VR applied to automotive engineering. In: International Conference on Education Technology and Computer, pp. 36–40 (2017)Google Scholar
  15. 15.
    Castro, J.C., et al.: Virtual reality on e-Tourism. In: Kim, K.J., Kim, H., Baek, N. (eds.) ICITS 2017. LNEE, vol. 450, pp. 86–97. Springer, Singapore (2018). Scholar
  16. 16.
    Huang, Y.C., Backman, K.F., Backman, S.J., Chang, L.L.: Exploring the implications of virtual reality technology in tourism marketing: An integrated research framework. Int. J. Tour. Res. 18(2), 116–128 (2016)CrossRefGoogle Scholar
  17. 17.
    Yap, H.J., Taha, Z., Dawal, S.Z.M., Chang, S.W.: Virtual reality based support system for layout planning and programming of an industrial robotic work cell. PLoS ONE 9(10), e109692 (2014)CrossRefGoogle Scholar
  18. 18.
    Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V.M., Jovanović, K.: Virtual laboratories for education in science, technology, and engineering: a review. Comput. Educ. 95, 309–327 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univeridad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Universidad Técnica de AmbatoAmbatoEcuador

Personalised recommendations