Advertisement

Autonomous and Tele-Operated Navigation of Aerial Manipulator Robots in Digitalized Virtual Environments

  • Christian P. Carvajal
  • María G. Méndez
  • Diana C. Torres
  • Cochise Terán
  • Oscar B. Arteaga
  • Víctor H. Andaluz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)

Abstract

This paper presents the implementation of a 3D virtual simulator that allows the analysis of the performance of different autonomous and tele-operated control strategies through the execution of service tasks by an aerial manipulator robot. The simulation environment is development through the digitalization of a real environment by means of 3D mapping with Drones that serves as a scenario to execute the tasks with a robot designed in CAD software. For robot-environment interaction, the Unity 3D graphics engine is used, which exchanges information with MATLAB to close the control loop and allow for feedback to compensate for the error. Finally, the results of the simulation, which validate the proposed control strategies, are presented and discussed.

Keywords

Environment digitalization Service robotic Aerial manipulators 

Notes

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GI-ARSI, for the support to develop this work.

References

  1. 1.
    Andaluz, Víctor H., et al.: Robust control with dynamic compensation for human-wheelchair system. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds.) ICIRA 2014. LNCS (LNAI), vol. 8917, pp. 376–389. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13966-1_37CrossRefGoogle Scholar
  2. 2.
    Jayawardena, C., Kuo., Unger, I., Igic, A., Wong, R., Watson, C., Stafford, R., Broadbent, E., Tiwari, P., Warren, J., Sohn, J., MacDonald, B.: Deployment of a service robot to help older people. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)Google Scholar
  3. 3.
    Andaluz, Víctor H., Ortiz, Jessica S., Sanchéz, Jorge S.: Bilateral control of a robotic arm through brain signals. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2015. LNCS, vol. 9254, pp. 355–368. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22888-4_26CrossRefGoogle Scholar
  4. 4.
    Doriya, R., Chakraborty, P., Nandi, G.: Robotic services in cloud computing paradigm. In: 2012 International Symposium on Cloud and Services Computing (2012)Google Scholar
  5. 5.
    Pillajo, C.: Calculation of SCARA manipulator optimal path subject to constraints. In: II International Congress of Engineering Mechatronics and Automation (2013)Google Scholar
  6. 6.
    Naldi, R., Gentili, L., Marconi, L.: Modeling and control of the interaction between flying robots and the environment. IFAC Proc. Vol. 43(14), 975–980 (2010)CrossRefGoogle Scholar
  7. 7.
    Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A., Stramigioli, S., Carloni, R., Marconi, L.: Developing an aerial manipulator prototype: physical interaction with the environment. IEEE Robot. Autom. Mag. 21(3), 41–50 (2014)CrossRefGoogle Scholar
  8. 8.
    Orsag, M., Korpela, C., Bogdan, S.: Valve turning using a dual-arm aerial manipulator. In: Unmanned Aircraft Systems (ICUAS), vol. 2014(1), pp. 1–7 (2014)Google Scholar
  9. 9.
    Tsukagoshi, H., Watanabe, M., Hamada, T., Ashlih, D., Iizuka, R.: Aerial manipulator with perching and door-opening capability. Robot. Autom. (ICRA) 2015(1), 4663–4668 (2015)Google Scholar
  10. 10.
    Marconi, L., Basile, F., Caprari, G., Carloni, R., Chiacchio, P., Hurzeler, C., Lippiello, V., Naldi, R., Nikolic, J., Siciliano, B., Stramigioli, S., Zwicker, E.: Aerial service robotics: the AIRobots perspective. In: 2nd International Conference on Applied Robotics for the Power Industry CARPI (2012)Google Scholar
  11. 11.
    Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A.Q., Stramigioli, S., Carloni, R., Marconi, L.: Developing an aerial manipulator prototype: physical interaction with the environment. IEEE Robot. Autom. Mag. 21(3), 41–50 (2014)CrossRefGoogle Scholar
  12. 12.
    Albers, A., Trautmann, S., Howard, T., Nguyen, T.A., Frietsch, M., Sauter, C.: Semi-autonomous flying robot for physical interaction with environment. In: IEEE Conference on Robotics, Automation and Mechatronics (2010)Google Scholar
  13. 13.
    Guerrero-Sanchez, M., Abaunza, H., Castillo, P., Lozano, R., Garcia-Beltran, C., Rodriguez-Palacios, A.: Passivity-based control for a micro air vehicle using unit quaternions. Appl. Sci. 7(1), 13 (2016)CrossRefGoogle Scholar
  14. 14.
    Ortiz, Jessica S., et al.: Modeling and kinematic nonlinear control of aerial mobile manipulators. In: Zeghloul, S., Romdhane, L., Laribi, M.A. (eds.) Computational Kinematics. MMS, vol. 50, pp. 87–95. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-60867-9_11CrossRefGoogle Scholar
  15. 15.
    Andaluz, Víctor H., et al.: Modeling and control of a wheelchair considering center of mass lateral displacements. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds.) ICIRA 2015. LNCS (LNAI), vol. 9246, pp. 254–270. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22873-0_23CrossRefGoogle Scholar
  16. 16.
    Wang, S., Mao, Z., Zeng, C., Gong, H., Li, S., Chen, B.: A new method of virtual reality based on Unity3D. In: 8th International Conference on Geoinformatics (2010)Google Scholar
  17. 17.
    Oliveira, M., Pereira, N., Oliveira, E., Almeida, J. E., Rossetti, R.J.: A multi-player approach in serious games: testing pedestrian fire evacuation scenarios. In: Oporto, DSIE15, January 2008Google Scholar
  18. 18.
    Indraprastha, A., Shinozaki, M.: The investigation on using Unity3D game engine in urban de-signstudy. J. ICT Res. Appl. 3(1), 1–18 (2009)Google Scholar
  19. 19.
    Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3d reconstruction in real-time. In: Intelligent Vehicles Symposium (IV), vol. 2011(1), pp. 1–6 (2011)Google Scholar
  20. 20.
    Flores, D.A., Saito, C., Paredes, J.A., Trujillano, F.: Aerial photography for 3D reconstruction in the Peruvian Highlands through a fixed-wing UAV system. In: Mechatronics (ICM), vol. 2017(1), pp. 1–7 (2017)Google Scholar
  21. 21.
    Kurnaz, S., Cetin, O., Kaynak, O.: Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles (2018)Google Scholar
  22. 22.
    Sorton, E., Hammaker, S.: simulated flight testing of an autonomous unmanned aerial vehicle using FlightGear (2018)Google Scholar
  23. 23.
    Kurnaz, S., Cetin, O., Kaynak, O.: Fuzzy logic based approach to design of flight control and navigation tasks for autonomous unmanned aerial vehicles. J. Intell. Robot. Syst. 54, 229–244 (2018)CrossRefGoogle Scholar
  24. 24.
    Psirofonia, P., Samaritakis, V., Eliopoulos, P., Potamitis, I.: Use of Unmanned Aerial Vehicles for Agricultural Applications with Emphasis on Crop Protection: Three Novel Case - studies (2018)Google Scholar
  25. 25.
    Trujano, G.B.R.R.F., Chan, B., Beams, G., Rivera, R.: Security Analysis of DJI Phantom 3Standard (2016)Google Scholar
  26. 26.
    Gerkey, B.P., Vaughan, R.T., Howard, A.: Tools for multi-robot and distributed sensor systems. In: Proceedings of the International Conference on Advanced Robotics (ICAR 2003), Coimbra, Portugal, pp. 317–323, 30 June–3 July 2003Google Scholar
  27. 27.
    Figueroa, R., Müller-Karger, C.: Effort analysis by the finite element method in the artificial foot design process. In: IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health, pp. 732–735 (2007)CrossRefGoogle Scholar
  28. 28.
    Xu, Y., Hoa, S.: Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 68(3–4), 854–861 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de Las Fuerzas Armadas ESPELatacungaEcuador

Personalised recommendations