Advertisement

Haptic Stimulation Glove for Fine Motor Rehabilitation in Virtual Reality Environments

  • Edgar F. Borja
  • Daniel A. Lara
  • Washington X. Quevedo
  • Víctor H. Andaluz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)

Abstract

This paper presents a fine motor rehabilitation system for upper limbs by using a virtual reality environment. For this purpose, a glove of stimulating bilateral haptic is built, which allows directly to determine the finger’s position through flexibility sensors. Also stimulate the medium and ulnar nerves of hand’s palm by using vibratory actuators in charge of feedback to contact with virtual surfaces. This system is based on bilateral communication between the virtual environment in the Unity 3D graphics engine and the haptic glove. It is responsible for analyzing the movements used by the patient and interact with the Oculus Rift and Leap Motion for an increased immersion of the patient in the virtual rehabilitation environment. In addition, it generates vibrating feedback submitted to contact with virtual objects. The connection and transmission of data is done through wireless technologies in charge of creating a reliable and real time communication. The patient performs exercises based on fine motor rehabilitation which they are feedback with haptic glove and validated by algorithms based on Euclidean distance. The experimental results show the correct operation of the glove and the virtual environments oriented to virtual rehabilitation systems.

Keywords

Rehabilitation system Haptic glove Virtual reality 

Notes

Acknowledgment

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia – CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-IX-2015-05, Tele-Operación Bilateral Cooperativo de Múltiples Manipuladores Móviles; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Politécnica de Chimborazo, and Escuela Politécnica Nacional, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GI-ARSI, for the support to develop this paper.

References

  1. 1.
    Ramírez-Fernández, C., Morán, A.L., García-Canseco, E.: Haptic feedback in motor hand virtual therapy increases precision and generates less mental workload. In: 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), Istanbul, pp. 280–286 (2015)Google Scholar
  2. 2.
    Low, J.H., et al.: Hybrid tele-manipulation system using a sensorized 3-D-Printed soft robotic gripper and a soft fabric-based haptic glove. IEEE Robot. Autom. Lett. 2(2), 880–887 (2017)CrossRefGoogle Scholar
  3. 3.
    Li, J., Tavakoli, M., Huang, Q.: Absolute stability of Multi-DOF multilateral haptic systems. IEEE Trans. Control Syst. Technol. 22(6), 2319–2328 (2014)CrossRefGoogle Scholar
  4. 4.
    Atashzar, S.F., Shahbazi, M., Samotus, O., Tavakoli, M., Jog, M.S., Patel, R.V.: Characterization of upper-limb pathological tremors: application to design of an augmented haptic rehabilitation system. IEEE J. Sel. Top. Signal Process. 10(5), 888–903 (2016)CrossRefGoogle Scholar
  5. 5.
    Jiang, T.T., Qian, Z.Q., Lin, Y., Bi, Z.M., Liu, Y.F., Zhang, W.J.: Analysis of virtual environment haptic robotic systems for a rehabilitation of post-stroke patients. In: IEEE International Conference on Industrial Technology (ICIT), pp. 738–742 (2017)Google Scholar
  6. 6.
    Sanfilippo, F., Pettersen, K.Y.: A sensor fusion wearable health-monitoring system with haptic feedback. In: IEEE International Conference on Innovations in Information Technology (IIT), pp. 262–266 (2015)Google Scholar
  7. 7.
    Otaduy, M.A., Okamura, A., Subramanian, S.: Haptic technologies for direct touch in virtual reality. ACM SIGGRAPH Courses (2016)Google Scholar
  8. 8.
    Molinari, M., Esquenazi, A., Anastasi, A.A., Nielsen, R.K., Stoller, O., D’Andrea, A., Calatayud, M.B.: Rehabilitation technologies application in stroke and traumatic brain injury patients. In: Pons, J., Raya, R., González, J. (eds.) Emerging Therapies in Neurorehabilitation II. Biosystems & Biorobotics, vol. 10, pp. 29–64. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-24901-8_2CrossRefGoogle Scholar
  9. 9.
    Iosa, M., Morone, G., Fusco, A., Castagnoli, M., Fusco, F.R., Pratesi, L., Paolucci, S.: Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top. Stroke Rehabil. 22, 306–316 (2015)CrossRefGoogle Scholar
  10. 10.
    Khademi, M., Hondori, H.M., McKenzie, A., Dodakian, L., Lopes, C.V., Cramer, S.: Free-hand interaction with leap motion controller for stroke rehabilitation. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, pp. 1663–1668 (2014)Google Scholar
  11. 11.
    Lahanas, V., Loukas, C., Georgiou, K., Lababidi, H., Al-Jaroudi, D.: Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller. Surg. Endosc. 31, 5012–5023 (2017)CrossRefGoogle Scholar
  12. 12.
    Rodriguez, N.: Teaching virtual reality with affordable technologies. In: Kurosu, M. (ed.) HCI 2016, Part I. LNCS, vol. 9731, pp. 89–97. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39510-4_9CrossRefGoogle Scholar
  13. 13.
    Parreño, M.A., Celi, C.J., Quevedo, W.X., Rivas, D., Andaluz, V.H.: Teaching-learning of basic language of signs through didactic games. In: Proceedings of the 2017 9th International Conference on Education Technology and Computers, pp. 46–51 (2017)Google Scholar
  14. 14.
    Castillejos, D.E., Noguez, J., Neri, L., Magana, A., Benes, B.: A review of simulators with haptic devices for medical training. J. Med. Syst. 40, 104 (2016)CrossRefGoogle Scholar
  15. 15.
    Andaluz, V.H., Salazar, P.J., Miguel Escudero, V., Carlos Bustamante, D., Marcelo Silva, S., Quevedo, W., Sánchez, J.S., Espinosa, E.G., Rivas, D.: Virtual reality integration with force feedback in upper limb rehabilitation. In: Bebis, G., et al. (eds.) ISVC 2016, Part II. LNCS, vol. 10073, pp. 259–268. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50832-0_25CrossRefGoogle Scholar
  16. 16.
    Hatzfeld, C., Kern, T.A.: Motivation and application of haptic systems. In: Hatzfeld, C., Kern, T.A. (eds.) Engineering Haptic Devices: A Beginner’s Guide. SSTHS, pp. 3–28. Springer, London (2014).  https://doi.org/10.1007/978-1-4471-6518-7_1CrossRefGoogle Scholar
  17. 17.
    Garner, T.A.: Applications of virtual reality. Echoes of Other Worlds: Sound in Virtual Reality: Past, Present and Future. PSS, pp. 299–362. Palgrave Macmillan, Cham (2018).  https://doi.org/10.1007/978-3-319-65708-0_9CrossRefGoogle Scholar
  18. 18.
    Bonnechère, B.: Serious Games in Physical Rehabilitation: From Theory to Practice. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-66122-3CrossRefGoogle Scholar
  19. 19.
    Hoda, M., Hafidh, B., El Saddik, A.: Haptic glove for finger rehabilitation. In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Turin (2015)Google Scholar
  20. 20.
    Connelly, L., Jia, Y., Toro, M.L., Stoykov, M.E., Kenyon, R.V., Kamper, D.G.: A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 18(5), 551–559 (2010)CrossRefGoogle Scholar
  21. 21.
    Ma, Z., Ben-Tzvi, P.: RML glove—an exoskeleton glove mechanism with haptics feedback. IEEE/ASME Trans. Mechatron. 20(2), 641–652 (2015)CrossRefGoogle Scholar
  22. 22.
    Andaluz, V.H., Pazmiño, A.M., Pérez, J.A., Carvajal, C.P., Lozada, F., Lascano, J., Carvajal, J.: Training of tannery processes through virtual reality. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017, Part I. LNCS, vol. 10324, pp. 75–93. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60922-5_6CrossRefGoogle Scholar
  23. 23.
    Fira, A.L., Mónica, S.C., Paulino, T., i Badia, S.B.: The benefits of emotional stimuli in a virtual reality cognitive and motor rehabilitation task: Assessing the impact of positive, negative and neutral stimuli with stroke patients. In: 2015 International Conference on Virtual Rehabilitation (ICVR), pp. 65–71 (2015)Google Scholar
  24. 24.
    Sucar, L.E., Orihuela-Espina, F., Velázquez, R.L., Reinkensmeyer, D.J., Leder, R., Hernández-Franco, J.: Gesture therapy: una plataforma de rehabilitación motora de base de realidad virtual. IEEE Trans. Neural Syst. Rehabil. Eng. 22(3), 634–643 (2014)CrossRefGoogle Scholar
  25. 25.
    Polygerinos, P., Stacey, L., Zheng, W., Nicolini, L.F.: Towards a soft pneumatic glove for hand rehabilitation. In: IEEE Intelligent Robots and Systems, pp. 1512–1517 (2013)Google Scholar
  26. 26.
    Yili, F., Qinchao, Z., Fuhai, Z., Zengkang, G.: Design and development of a hand rehabilitation robot for patient-cooperative therapy following stroke. In: IEEE International Conference on Mechatronics and Automation, pp. 112–117 (2011)Google Scholar
  27. 27.
    Gil-Gómez, J.A., Gil-Gómez, H., Lozano-Quilis, J.A., Manzano-Hernández, P., Albiol-Pérez, S., Aula-Valero, C.: SEQ: suitability evaluation questionnaire for virtual rehabilitation systems. application in a virtual rehabilitation system for balance rehabilitation. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, pp. 335–338 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador

Personalised recommendations